簡易檢索 / 詳目顯示

研究生: 林宏易
Lin, Hong-Yi
論文名稱: 高雄市公共自行車系統旅運行為模擬
Travel behavior simulation of Bike-sharing system users in Kaohsiung City
指導教授: 林峰田
Lin, Feng-Tyan
孔憲法
Kung, Shiann-Far
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 多主體模擬模型巨量資料公共自行車系統旅運行為
外文關鍵詞: agent-based model, big data, BSS, travel behavior
相關次數: 點閱:77下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 進行都市規劃、運輸規劃時,需藉由觀察及分析活動、使用情形,了解議題癥結點,以建立有效且較低環境衝擊之策略。近年隨著各種智慧裝置、定位系統和偵測器的發展,透過這些裝置可詳盡地記錄都市中的活動與旅運行為,解決傳統調查方式成本過高的問題。
    公共自行車系統以自動化方式提供使用者可快速地於租借站借、還自行車,進行中短程的旅運行為;亦可用於整合都市中不同的運輸系統,尤其綠色運具,如軌道運輸、公車等。系統自動化除了便民外,同時可記錄系統中每次租借的資訊,包含借、還車時間與地點。過去亦有許多文獻利用租借資料探討公共自行車使用者行為及影響因子。
    本研究以高雄市公共自行車系統(C-bike)2016年作為研究範疇,利用巨量之租賃資料進行分析彙整,結合土地使用,將各租借站分類,並歸納行為規則,藉此建立公共自行車系統使用者旅運行為之多主體模擬模型。進行10日之模擬後,模擬結果顯示,模擬模型能夠反映與實際高雄市公共自行車系統使用行為,總使用量於模擬結果與實際情形僅相差1.5%內,各站租借量與歸還量亦達到正確率92%與70%,租借型態分別有97%與70%達到高度相關。
    本研究所建置之模擬模型將能夠有效幫助模型操作者直接觀察、了解公共自行車之使用分布與活動情形。操作者亦可設定不同情境,嘗試不同政策之情境模擬,並可記錄及匯出模擬之使用紀錄,以供分析與進行比較。

    The bike-sharing systems(BSS) provide users with the ability to pick up and return bikes quickly from docking stations, and also be used to integrate different transportation systems in the city. BSS not only provides more convenient services, it also records rental information in the system. There has been some literature to explore the travel behavior and the factors that affect the users’ behavior of BSS.
    After inducting the rule of travel behavior of users based on operation data of BSS in Kaohsiung city (C-bike), this study establishes the simulation model with agent-based model. After simulating 10 days’ data, the results show that the simulation model can properly reflect the actual users' behavior. The difference in total amount in simulation results and actual situation is only 1.5%. In the simulation results, 92% and 70% of the docking stations are comparable to the actual pickup and return amount. The pattern of pickups and returns are also high correlated with actual situation.
    The simulation model built in this study can help planners to observe and understand the distribution and activity of public bicycle. Planners can also test different policy scenarios, and record and export the simulation records for further analysis and comparison.

    第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 1 第三節 研究目的 2 第四節 研究重要性 2 第五節 名詞定義 2 第二章 文獻回顧 3 第一節 公共自行車系統 3 第二節 使用者活動特性 9 第三節 模擬研究 11 第三章 研究設計 16 第一節 研究資料及範圍 16 第二節 研究方法及架構 18 第三節 設定環境變數及旅運行為規則 29 第四節 局部包含路網分派 36 第五節 研究限制與假設 37 第四章 研究成果 39 第一節 旅運行為特性 39 第二節 模擬模型 42 第三節 模擬結果 52 第四節 路網分派 61 第五章 結論及建議 65 第一節 結論與討論 65 第二節 後續研究建議 69 第三節 貢獻及應用 70 參考文獻 72 附錄一 租借站對照表 78 附錄二 各租借站模擬結果與實際使用量對照表 84 附錄三 各租借站模擬結果與實際使用型態相關係數表 90

    王少谷(2015)。公共自行車租用與都市土地使用型態關聯性之探討,國立成功大學,台南市。
    白詩滎(2013)。臺北公共自行車使用行為特性分析與友善環境建構之研究,國立政治大學,台北市。
    交通部運輸研究所(2008)。綠色運輸系統與土地使用規劃整合之研究,交通部運輸研究所綜合技術組。
    余書玟(2009)。公共自行車租借系統選擇行為之研究,國立交通大學,新竹市。
    李政興(2013)。混合式交通之互動式模擬系統,國立交通大學,新竹市。
    林峰田(2015)。都市公共自行車系統資料分析與動態模擬模型之建構,科技部專題研究計畫書。
    夏皓清(2003)。上班者平日交通╱活動關連分析之研究─以台南都會區為實證. (碩士),國立成功大學,台南市。
    解鴻年、張馨文(2011)。新竹科學城民眾使用公共自行車意願分析,建築與規劃學報,12(3),237-263。
    鄭文吉(2013)。 漫談蒙地卡羅法的原理及其應用。高雄區農業改良場研究彙報,23(1),26-41。
    薛领、杨开忠、沈体雁 (2004)。 基于 agent 的建模——地理计算的新发展. 地球科学进展, 19(2), 305-311。
    Angeloudis, P., Hu, J., & Bell, M. G. H. (2014). A strategic repositioning algorithm for bicycle-sharing schemes. Transportmetrica A: Transport Science, 10(8), 759-774.
    Axelrod, R., & Hamilton, W. D. (1981). The Evolution of Cooperation. Science, 211(4489), 1390-1396.
    Bachand-Marleau, J., Lee, B., El-Geneidy, A. (2012). Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use. Transp. Res. Rec. 2314, 66–71.
    Balmer, M., Cetin, N., Nagel, K., & Raney, B. (2004). Towards Truly Agent-Based Traffic and Mobility Simulations. Paper presented at the Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1, New York, New York.
    Balmer, M. (2008). Agent-based simulation of travel demand: Structure and computational performance of MATSim-T.
    Balmer, M., Cetin, N., Nagel, K., & Raney, B. (2004). Towards Truly Agent-Based Traffic and Mobility Simulations. Paper presented at the Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1, New York, New York.
    Balmer, M., Raney, B., & Nagel, K. (2005). Adjustment of activity timing and duration in an agent-based traffic flow simulation.
    Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier, F., & Robinet, L. (2011). Balancing the stations of a self service “bike hire” system. RAIRO - Operations Research, 45(1), 37-61.
    Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl 3), 7280-7287.
    Bonnette, B. (2007). The implementation of a Public-Use Bicycle Program in Philadelphia. University of Pennsylvania, Philadelphia.
    Borgnat, P., Robardet, C., Rouqier, J., Abry, P., Fleury, E., Flandrin, P. (2010). Shared Bicycles in a City: A Singnal Processing and Data Analysis Perspective.Advances in Complex System, 14(03), 415-438.
    Brockmann, D., Hufnagel, L., & Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075), 462-465.
    Buck, D., Buehler, R. (2012). Bike lanes and other determinants of capital bikeshare trips. In: Paper presented at the 91st Transportation Research Board Annual Meeting 2012, Washington, DC.
    Buck, D., Buehler, R., Happ, P., Rawls, B., Chung, P., Borecki, N. (2013). Are Bikeshare Users Different from Regular Cyclists?. Transportation Research Record: Journal of the Transportation Research Board, 2387(1), 112-119.
    Cameron, G., Wylie, B. J. N., & McArthur, D. (1994, November). PARAMICS-moving vehicles on the connection machine. Paper presented at the Proceedings of Supercomputing '94.
    Cetin, N., Burri, A., & Nagel, K. (2003). A Large-Scale Agent-Based Traffic Microsimulation Based On Queue Model. Paper presented at the Swiss Transport Research Conference, Ascona.
    Cherry, C., & He, M. (2010). Alternative Methods of Measuring Operating Speed of Electric and Traditional Bikes in China-Implications for Travel Demand Models. Journal of the Eastern Asia Society for Transportation Studies, 8, 1424-1436.
    DeMaio, P. J. (2001). Smart Bikes: Public Transportation for the 21st Century. Transportation Reserch Board, 2387(1), 112-119.
    Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014). How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41, 306-314.
    Fellendorf, M., & Vortisch, P. (2010). Microscopic Traffic Flow Simulator VISSIM. In: Barceló J. (eds) Fundamentals of Traffic Simulation. International Series in Operations Research & Management Science, vol 145. Springer, New York, NY.
    Froehlich, J., Neumann, J., & Oliver, N. (2009). Sensing and predicting the pulse of the city through shared bicycling. Paper presented at the Proceedings of the 21st international jont conference on Artifical intelligence, Pasadena, CA.
    Gipps, P. G. (1981). A behavioural car-following model for computer simulation. Transportation Research Part B: Methodological, 15(2), 105-111.
    Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779-782.
    Gregerson, J., Hepp-Buchanan, M., Rowe, D., Vander Sluis, J., Wygonik, E., Xenakis, M., McCormack, E. (2010). Seattle Bicycle Share Feasibility Study. University of Washington, Seattle.
    Hägerstraand, T. (1970). What about people in regional science?. Papers in regional science, 24(1), 7-24.
    Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98-115.
    Horni, A, Nagel, K and Axhausen, K W (eds.) (2016) The Multi-Agent Transport Simulation MATSim. London: Ubiquity Press.
    Ji, S., Cherry, C. R., Han, L. D., & Jordan, D. A. (2014). Electric bike sharing: simulation of user demand and system availability. Journal of Cleaner Production, 85(Supplement C), 250-257.
    Jiang, B., Yin, J., & Zhao, S. (2009). Characterizing the human mobility pattern in a large street network. Physical Review E, 80(2), 021136.
    Lee, T.-C., & Wong, K. I. (2016). An agent-based model for queue formation of powered two-wheelers in heterogeneous traffic. Physica A: Statistical Mechanics and its Applications, 461, 199-216.
    Liang, X., Zheng, X., Lv, W., Zhu, T., & Xu, K. (2012). The scaling of human mobility by taxis is exponential. Physica A: Statistical Mechanics and its Applications, 391(5), 2135-2144.
    Lin, J.-R., & Yang, T.-H. (2011). Strategic design of public bicycle sharing systems with service level constraints. Transportation Research Part E: Logistics and Transportation Review, 47(2), 284-294.
    Liu, Y., Sui, Z., Kang, C., & Gao, Y. (2014). Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data. PLOS ONE, 9(1), e86026.
    Midgley, P. (2009). The Role of Smart Bike-sharing Systems in Urban Mobility. Land Transport Authority, May 2009, 23-31.
    Midgley, P. (2011). Bicycle-sharing schemes: enhancing sustainable mobility in urban areas. United Nations, Department of Economic and Social Affairs, 1-12.
    Miller, J., & Horowitz, E. (2007, October). FreeSim - a free real-time freeway traffic simulator. Paper presented at the 2007 IEEE Intelligent Transportation Systems Conference.
    Nair, R., Miller-Hooks, E., Hampshire, R., Busic, A., (2013). Large-scale vehicle sharing systems: analysis of velib. Int. J. Sustain. Transport. 7, 85–106.
    O’Brien, O., Cheshire, J., Batty, M. (2014). Mining bicycle sharing data for generating insights into sustainable transport systems. Journal of Transport Geography. 34, Pages 262–273.
    Owen, L. E., Zhang, Y., Lei, R., & McHale, G. (2000, December). Traffic flow simulation using CORSIM. Paper presented at the 2000 Winter Simulation Conference Proceedings.
    Redmill, K. A., & Ozguner, U. (1999, October). VATSIM: a Vehicle And Traffic SIMulator. Paper presented at the Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).
    Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph., 21(4), 25-34.
    Rixey, R. (2013). Station-level forecasting of bikesharing ridership. Transportation Research Record: Journal of the Transportation Research Board, 2387(1), 46-55.
    Roth, C., Kang, S. M., Batty, M., & Barthélemy, M. (2011). Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows. PLOS ONE, 6(1), e15923.
    Schelling, T. C. (1971). DYNAMIC MODELS OF SEGREGATION. Journal of Mathematical Sociology, 1(2), 143-186.
    Schruben, L. (2010). Simulation modeling for analysis. ACM Trans. Model. Comput. Simul., 20(1), 1-22.
    Shaheen, S. A., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia. Transportation Research Record: Journal of the Transportation Research Board, 2143(1), 159-167.
    Shaheen, S., Cohen, A., & Martin, E. (2013). Public bikesharing in North America: early operator understanding and emerging trends. Transportation Research Record: Journal of the Transportation Research Board, (2387), 83-92.
    Shakshuki, E., Younas, M., Vasic, J., & Ruskin, H. J. (2012). Agent-based Space-time Discrete Simulation of Urban Traffic Including Bicycles. Procedia Computer Science, 10, 860-865.
    Shen, Z., Wang, K., & Zhu, F. (2011, October). Agent-based traffic simulation and traffic signal timing optimization with GPU. Paper presented at the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).
    Vasic, J., & Ruskin, H. J. (2012). Agent-based Space-time Discrete Simulation of Urban Traffic Including Bicycles. Procedia Computer Science, 10, 860-865.
    Vasic, J., & Ruskin, H. J. (2012). Cellular automata simulation of traffic including cars and bicycles. Physica A: Statistical Mechanics and its Applications, 391(8), 2720-2729.
    Vogel, P., Greiser, T., Mattfeld, D.C. (2011). Understanding bike-sharing systems using Data Mining: Exploring activity patterns. Procedia Social and Behavioral Science, 20, 514-523.
    Wahle, J., Bazzan, A. L. C., Klügl, F., & Schreckenberg, M. (2002). The impact of real-time information in a two-route scenario using agent-based simulation. Transportation Research Part C: Emerging Technologies, 10(5–6), 399-417.
    Wang, X., Lindsey, G., Schoner, J., Harrison, A. (2012, August). Modeling bike share station activity: the effects of nearby businesses and jobs on trips to and from stations. Paper Presented at the 92nd Transportation Research Board Annual Meeting 2012, Washington, DC.
    Wu, L., Zhi, Y., Sui, Z., & Liu, Y. (2014). Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data. PLOS ONE, 9(5): e97010.
    Yang, Q. I., & Koutsopoulos, H. N. (1996). A Microscopic Traffic Simulator for evaluation of dynamic traffic management systems. Transportation Research Part C: Emerging Technologies, 4(3), 113-129.
    Yibing, W., Papageorgiou, M., & Messmer, A. (2006). A real-time freeway network traffic surveillance tool. IEEE Transactions on Control Systems Technology, 14(1), 18-32.
    Zhang, L., Zhang, J., Duan, Z.-y., & Bryde, D. (2015). Sustainable bike-sharing systems: characteristics and commonalities across cases in urban China. Journal of Cleaner Production, 97, 124-133.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE