簡易檢索 / 詳目顯示

研究生: 陳昱翔
Chen, Yu-Hsiang
論文名稱: 共軛高分子和二維材料混摻結構在光催化產氫反應之探討
Study on the photocatalytic hydrogen evolution reactions of hybrid structures of conjugated polymer and two-dimensional materials
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 聚(3-己基噻吩)二維材料混摻薄膜光電流
外文關鍵詞: P3HT, two-dimensional materials, hybrids thin film, photocurrent
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用共軛高分子Poly(3-hexylthiophene-2,5-diyl) (P3HT)和二維材料混摻形成混摻結構,並探討混摻薄膜和純共軛高分子薄膜在光催化反應中之光電流表現。並比較混摻不同二維材料所造成的光電流之差異。
    從我們的實驗中發現,P3HT和石墨烯混摻後能在石墨烯表面貼附,並且透過持溫後P3HT能在石墨烯表面形成特殊的條紋狀結晶。因此,我們以此結構為基礎形成的薄膜進行光電流測量。除此之外,我們也改變薄膜製程,將P3HT和石墨烯以垂直方式堆疊形成垂直混摻薄膜。並分別使用不同方式將石墨烯鋪在P3HT薄膜上。
    另一方面,屬於過度金屬二硫化物的二硫化鉬在光催化的產氫領域已有許多研究和應用。其片狀二硫化鉬的邊緣暴露的硫原子可做為產氫反應的活性位點,使得二硫化鉬能夠有效的提升光催化活性。因此,除了混摻石墨烯,我們也將P3HT與二硫化鉬混摻,並比較石墨烯和二硫化鉬的在光催化反應上的表現差異。
    最後,我們在實驗中也發現P3HT本身具有良好的光電流表現。因此我們以P3HT為主要目標將其和共軛高分子Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS)製成雙層薄膜,並測試其光電流的改變。除此之外,我們也進行P3HT薄膜在除氧環境下長時間保存的穩定性實驗,並觀察隨著保存時間的增加,光電流的變化。此研究目的旨在藉由一系列的探討,可以更瞭解共軛高分子和二維材料製成的混摻材料在光催化產氫反應的機制和表現。

    In this study, we investigated the difference in photocatalytic performance between pure polymer thin film and hybrid thin film, with poly(3-hexylthiophene-2,5-diyl) (P3HT) and two-dimensional materials forming a hybrid structure.
    In our experiments, we observed that P3HT can attach to the surface of graphene in the hybrid structure, and it will turn further into a distinctive crystalline morphology. Thereafter, we measured the photocurrent of thin films with the distinctive structure that we observed. We also altered the film process by stacking graphene on the P3HT film to from a vertical hybrid film. Different preparation methods were adapted to distribute graphene on the P3HT film.
    On the other hand, molybdenum disulfide (MoS2) has been studied and applied to the field of hydrogen evolution reactions (HER). The exposed sulfur atoms on the edge of the MoS2 flakes can be used as the active sites for the HER. Therefore, MoS2 can effectively improve the photocatalytic activity. Based on the above, we further prepared hybrid P3HT and MoS2 films for photocurrent performance comparison.
    We found out from our experiments that pure P3HT film performs better in photocurrent than the others. Therefore, we mixed P3HT with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and measured its photocurrent. In addition, we measured the stability of P3HT thin films stored in an oxygen-free environment throughout a period of two months, observing the change in photocurrent with increasing storage time. With this study, we went further in understanding the HER performance and the mechanisms of conjugated polymers/2D materials hybrid films.

    摘要 I 英文延伸摘要 II 致謝 VII 目錄 X 圖目錄 XIII 表目錄 XIX 第一章 緒論 1 第二章 文獻回顧 2 2.1 二維材料2 2.1.1 二維材料的性質2 -石墨烯 2 -二硫化鉬 4 2.2 二維材料的脫層與分散 9 2.2.1 二維材料的脫層方式 9 2.2.2 在溶劑中分散二維材料的方式 11 2.2.3 二維材料混摻(hybrids)的堆疊和組裝 14 2.3 二維材料/高分子複合材料的光催化效應 18 2.3.1 光催化的基礎概念 18 2.3.2 二維材料對光催化的影響 21 第三章 材料與實驗方法 24 3.1 實驗材料 24 3.2 實驗使用儀器 27 3.3 實驗流程 32 3.4 實驗步驟 35 第四章 結果與討論 38 4.1 P3HT/二維材料之混摻材料結構分析 38 4.1.1 二維材料的脫層 38 4.1.2 混摻薄膜的觀察與鑑定 40 4.2 混摻薄膜之光電流分析 49 4.2.1 單層混摻薄膜 49 4.2.2 雙層混摻薄膜 53 4.3 PEDOT/P3HT雙層混摻薄膜之光電流分析 61 4.4 P3HT穩定性表現 64 第五章 結論 67 第六章 參考文獻 68

    [1] Tiwari, J. N., Tiwari, R. N., and Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), 724-803.
    [2] Gupta, A., Sakthivel, T., and Seal, S. (2015). Recent development in 2D materials beyond graphene. Progress in Materials Science, 73, 44-126.
    [3] Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., and Seal, S. (2011). Graphene based materials: past, present and future. Progress in materials science, 56(8), 1178-1271.
    [4] Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., and Zamora, F. (2011). 2D materials: to graphene and beyond. Nanoscale, 3(1), 20-30.
    [5] Butler, S. Z., Hollen, S. M., Cao, L., Cui, Y., Gupta, J. A., Gutiérrez, H. R., ... and Goldberger, J. E. (2013). Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano, 7(4), 2898-2926.
    [6] Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F. (2010). Atomically thin MoS2: a new direct-gap semiconductor. Physical review letters, 105(13), 136805.
    [7] Allen, M. J., Tung, V. C., and Kaner, R. B. (2010). Honeycomb carbon: a review of graphene. Chemical reviews, 110(1), 132-145.
    [8] Xiang, Q., Yu, J., and Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 41(2), 782-796.
    [9] An, X., and Jimmy, C. Y. (2011). Graphene-based photocatalytic composites. Rsc Advances, 1(8), 1426-1434.
    [10] Park, J., Ahn, Y. H., and Ruiz-Vargas, C. (2009). Imaging of photocurrent generation and collection in single-layer graphene. Nano letters, 9(5), 1742-1746.
    [11] Zhang, J., Xiong, Z., and Zhao, X. S. (2011). Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. Journal of Materials Chemistry, 21(11), 3634-3640.
    [12] Li, N., Liu, G., Zhen, C., Li, F., Zhang, L., and Cheng, H. M. (2011). Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template‐free self‐assembly. Advanced Functional Materials, 21(9), 1717-1722.
    [13] Kamat, P. V. (2010). Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. The Journal of Physical Chemistry Letters, 1(2), 520-527.
    [14] Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A. (2011). Single-layer MoS2 transistors. Nature nanotechnology, 6(3), 147-150.
    [15] Lv, R., Robinson, J. A., Schaak, R. E., Sun, D., Sun, Y., Mallouk, T. E., and Terrones, M. (2015). Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Accounts of chemical research, 48(1), 56-64.
    [16] Ning, M. Q., Lu, M. M., Li, J. B., Chen, Z., Dou, Y. K., Wang, C. Z., ... and Jin, H. B. (2015). Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance. Nanoscale, 7(38), 15734-15740.
    [17] Li, Z., Meng, X., and Zhang, Z. (2018). Recent development on MoS2-based photocatalysis: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 35, 39-55.
    [18] Yuan, Y. J., Lu, H. W., Yu, Z. T., and Zou, Z. G. (2015). Noble‐metal‐free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. ChemSusChem, 8(24), 4113-4127.
    [19] Lau, H. M. (2019). Electrochemical activation of small molecules by monolayer molybdenum disulphide. Doctoral dissertation, University of Oxford.
    [20] Hogan, B. T., Kovalska, E., Craciun, M. F., and Baldycheva, A. (2017). 2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C, 5(43), 11185-11195.
    [21] Demon, S. Z. N., Kamisan, A. I., Abdullah, N., Noor, S. A. M., Khim, O. K., Kasim, N. A. M., ... and Halim, N. A. (2020). Graphene-based Materials in Gas Sensor Applications: A Review. Sensors & Materials, 32.
    [22] Khairir, N. S., Hussin, M. R. M., Nasir, I. M., Uz-Zaman, A. M., Abdullah, W. F. H., and Zoolfakar, A. S. (2015, November). Study of reduced graphene oxide for trench Schottky diode. In IOP Conference Series: Materials Science and Engineering (Vol. 99, No. 1, p. 012031). IOP Publishing.
    [23] Ciesielski, Artur, and Paolo Samorì. (2014). Graphene via sonication assisted liquid-phase exfoliation. Chemical Society Reviews 43.1: 381-398.
    [24] Yang, D., and R. F. Frindt. (1996). Li-intercalation and exfoliation of WS2. Journal of Physics and Chemistry of Solids 57.6-8: 1113-1116.
    [25] Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., and Zamora, F. (2011). 2D materials: to graphene and beyond. Nanoscale, 3(1), 20-30.
    [26] Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., and Seal, S. (2011). Graphene based materials: past, present and future. Progress in materials science, 56(8), 1178-1271.
    [27] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 22(35), 3906-3924.
    [28] Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., ... and Nicolosi, V. (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331(6017), 568-571.
    [29] Zhao, M., Chang, M. J., Wang, Q., Zhu, Z. T., Zhai, X. P., Zirak, M., ... and Zhang, H. L. (2015). Unexpected optical limiting properties from MoS2 nanosheets modified by a semiconductive polymer. Chemical Communications, 51(61), 12262-12265.
    [30] Israelachvili, J. N. (2022). Surface forces. In The Handbook of Surface Imaging and Visualization (pp. 793-816). CRC Press.
    [31] Guo, H. W., Hu, Z., Liu, Z. B., and Tian, J. G. (2021). Stacking of 2D materials. Advanced Functional Materials, 31(4), 2007810.
    [32] Koma, A. (1992). Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films, 216(1), 72-76.
    [33] da Silveira Firmiano, E. G., Rabelo, A. C., Dalmaschio, C. J., Pinheiro, A. N., Pereira, E. C., Schreiner, W. H., and Leite, E. R. (2014). Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Advanced Energy Materials, 4(6), 1301380.
    [34] Li, W., Liu, Q., Sun, Y., Sun, J., Zou, R., Li, G., ... and Hu, J. (2012). MnO2 ultralong nanowires with better electrical conductivity and enhanced supercapacitor performances. Journal of Materials Chemistry, 22(30), 14864-14867.
    [35] Huang, M., Zhou, Y., Guo, Y., Wang, H., Hu, X., Xu, X., and Ren, Z. (2018). Facile one-pot liquid exfoliation preparation of molybdenum sulfide and graphene heterojunction for photoelectrochemical performance. Journal of materials science, 53(10), 7744-7754.
    [36] Ameta, R., Solanki, M. S., Benjamin, S., and Ameta, S. C. (2018). Photocatalysis. In Advanced oxidation processes for waste water treatment (pp. 135-175). Academic Press.
    [37] Zhang, J., Tian, B., Wang, L., Xing, M., Lei, J., Zhang, J., ... and Lei, J. (2018). Mechanism of photocatalysis. Photocatalysis: Fundamentals, Materials and Applications, 1-15.
    [38] Leary, R., and Westwood, A. (2011). Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 49(3), 741-772.
    [39] Ohtani, B. (2008). Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chemistry letters, 37(3), 216-229.
    [40] Saravanan, R., Gracia, F., and Stephen, A. (2017). Basic principles, mechanism, and challenges of photocatalysis. Nanocomposites for visible light-induced photocatalysis, 19-40.
    [41] Li, X., Yu, J., Wageh, S., Al‐Ghamdi, A. A., and Xie, J. (2016). Graphene in photocatalysis: a review. Small, 12(48), 6640-6696.
    [42] Ma, Y., Dai, Y., Guo, M., Niu, C., and Huang, B. (2011). Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale, 3(9), 3883-3887.
    [43] Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics reports, 473(5-6), 51-87.
    [44] Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., and Ryu, S. (2010). Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 4(5), 2695-2700.
    [45] Adeli, B., and Taghipour, F. (2020). Atomic-scale synthesis of nanoporous gallium–zinc oxynitride-reduced graphene oxide photocatalyst with tailored carrier transport mechanism. RSC advances, 10(25), 14906-14914.
    [46] Kymakis, E., Kornilios, N., and Koudoumas, E. (2008). Carbon nanotube doping of P3HT:PCBM photovoltaic devices. Journal of Physics D: Applied Physics, 41(16), 165110.
    [47] Xu, L., Zhao, Y., Li, Z., Wu, J., Cui, J., Tian, B., ... and Tian, Y. (2022). π–d Electron-Coupled PBDIT/CdS Heterostructure Enables Hole Extraction for Efficient Photocatalytic Hydrogen Production. ACS Applied Materials and Interfaces, 14(22), 25278-25287.
    [48] Vavilapalli, D. S., Rosen, J., and Singh, S. (2023). Immobilization of a TiO2–PEDOT:PSS hybrid heterojunction photocatalyst for degradation of organic effluents. RSC advances, 13(5), 3095-3101.

    無法下載圖示 校內:2028-08-23公開
    校外:2028-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE