簡易檢索 / 詳目顯示

研究生: 鍾浩元
Chung, Hao-Yuan
論文名稱: 金屬轉印微影技術與陣列式微奈米金屬粒子應用於局域性表面電漿子共振之研究
Arrayed Metallic Micro/Nano Particles for Localized Surface Plasmon Resonance Based on Metal Contact Transfer Lithography
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 131
中文關鍵詞: 接觸式金屬轉印陣列式微奈米金屬粒子局域性表面電漿共振有限差分時域法Lorentz-Drude model
外文關鍵詞: CMEL, Arrayed Metallic Micro/Nano Particles, LSPR, FDTD, Lorentz-Drude model
相關次數: 點閱:80下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用接觸式金屬轉印 (Contact transfer and metal mask embedded lithography, CMEL) 技術定義次微米的陣列圖形,結合舉離及熱退火製程可製作陣列式金屬微奈米粒子。本研究的製程可使用不同母模仁改變金屬粒子陣列的大小與形狀;或經由改變所蒸鍍金屬層的厚度,在一定範圍內控制金屬粒子的大小;亦可透過混合疊層各種不同的金屬層,以製作合金粒子。以上特點均可應用於陣列金屬粒子的局域性表面電漿共振效應 (Localized Surface Plasmon Resonance Effect, LSPR Effect) 的研究與元件製作。本研究製程可在1 cm x 1 cm的範圍佈滿六角最密堆積,週期400 nm,直徑90 nm的銀粒子。
    本研究在實驗上觀察出具金 (Au) 或銀 (Ag) 金屬陣列結構的ITO玻璃基板,其穿透光譜在波長約550 nm時會出現一窄頻穿透谷值。使用Lorentz-Drude model 搭配有限差分時域法 (Finite difference time domain method, FDTD) 軟體模擬實驗現象,發現其窄頻穿透谷值來自於陣列式週期排列之金屬結構與ITO層的電場偶合,近一步增強金屬結構的局部電場,最後激發出ITO層的電漿共振。此一陣列式週期排列金屬結構與ITO層的電漿現象可望應用於多種不同的光電元件。

    In this study, contact transfer and metal mask embedded lithography (CMEL) is applied to define and pattern arrayed metallic structures which have feature sizes in the sub-micrometer or nanometer scales. Combining with lift-off and thermal annealing processes, it is possible to fabricate arrayed matellic micro/nano particles on a variety of substrates, including ITO glasses. The dimensions, shapes, and arrangements of these arrayed metallic mciro/nano-structures can be easily adjusted by using different type of imprinting molds. The size and material combination of the obtained metal particles can be controlled by the thicknesses and varieties of metallic films deposited during the lift-off process. Such a flexibility in the fabrication of arrayed metallic micro/nano-structures plays an critical role in the investigation of localized surface plasmon resonance effect (LSPR Effect) and related devices. This study currently can make hexagonal array with a period of 400 nm and metallic nano-particles with a diameter of 90 nm diameter covering an area of 1 cm x 1 cm in size.
    In this study, it is observed in experiments that gold or silver metallic array structures deployed on the surface of an ITO substrate will demonstrate a narrowband low transmittance spectrum near the wavelength of about 550 nm. Using the Lorentz-Drude model and a FDTD simulation software, it is found that the narrowband low transmittance spectrum is associated with electromagnetic field coupling between the metal micro/nano-structures and the ITO thin layer. This electromagnetic field coupling induces significant plasmon resonance in the ITO layer underneath the arrayed metallic micro/nanao-structures. Based on this observed phenomenon and its theoretical analysis, new optoelectronic devices can be designed and developed in the future.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XV 符號說明 XVI 第一章 緒論 1 1.1 背景 1 1.2 文獻回顧 2 1.2.1 奈米壓印 2 1.2.2局域性表面電漿共振效應 8 1.3論文架構 11 第二章 接觸式金屬轉印及熱退火製作陣列微奈米金屬粒子 12 2.1 介紹 12 2.2 接觸式金屬轉印 13 2.3 使用CMEL製程優勢 15 2.4 實驗 16 2.4.1 壓印模仁及基板準備 16 2.4.2 陣列式微奈米金屬粒子製作 22 2.5陣列金屬粒子製作結果與討論 24 2.5.1 陣列金屬薄膜製作結果與討論 24 2.5.2退火結果與討論 27 2.5.2.1雷射退火結果 27 2.5.2.2 RTA退火結果 32 2.5.3 退火比較與分析 37 第三章 光譜數值模擬方法 39 3.1 FDTD介紹 39 3.1.1 FDTD基本原理 39 3.1.2 數值穩定條件 50 3.1.3 入射波源 51 3.1.4完美匹配層吸收邊界 53 3.2 Lorentz-Drude model 54 3.2.1 介紹 54 3.2.2 Lorentz model 55 3.2.3 Drude model 57 3.2.4 Lorentz-Drude model 60 3.3 OptiFDTD 63 第四章 光學量測與模擬分析 73 4.1光學實驗量測 73 4.2 光學量測結果討論 86 4.3模擬分析 87 4-5光學模擬結果討論 115 4.5應用 116 4.5.1有機太陽能電池 116 4.5.2濾波器 120 第五章 結論與未來展望 122 5.1結論 122 5.2 未來工作 123 References 124 自述 131

    [1] Chou, S. Y., Krauss, P. R., and Renstrom, P. J., “Imprint lithography with 25-nanometer resolution,” Science 272, p.85-87, 1996.
    [2] Chou, S. Y., Krauss, P. R., “Imprint lithography with sub-10nm feature size and high throughput,” Microelect.Eng. 35,p.237-240, 1997.
    [3] Guo, L., Krauss, P. R., and Chou, S. Y., “Nanoscale silicon field effect transistors fabricated using imprint lithography,”Appl. Phys. Lett. 71, p.1881-1883, 1997.
    [4] Zhang, W. and Chou, S. Y., “Fabrication of 60-nm transistors on 4-in. wafer using nanoimprint at all lithography levels,” Appl. Phys. Lett. 83, p.1632-1634, 2003.
    [5] Colbun, M., Johnson, S., Stewart, M., Damle, S., Bailey, T., Choi, B., Wedlake, M., Michaelson, T., Sreenivasan, S. V., Ekerdt, J., and Willson, C. G., “Step and flash imprint lithography: a new approach to high-resolution patterning.” Proc. SPIE 3676, p.376-389, 1999.
    [6] Stewart, M. D., Johnson, S. C., Sreenivasan, S. V., Resnick, D. J.,and Willson, C. G., “Nanofabrication with step and flesh imprint lithography,” J. Microlith., Microfab. and Microsys. 4(1), p. 1-6 (011002), 2005.
    [7] Xia, Y., Mrksich, M., Kim, E., and Whitesides, G. M., “Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication,” J. Am. Chem. Soc. 117, p.9575-9577 1995.
    [8] Xia, Y., Whitesides, G. M., “Soft lithography,” Angew. Chem. Int. Ed. 37, p.550-75, 1998.
    [9] Chou, S. Y., Keimel, C., and Gu, J, “Ultrafast and direct imprint of nanostructures in silicon,” Nature 417, p.835-837, 2002.
    [10] Tan, H., Gilbertson, A., and Chou, S. Y., “Roller nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), p.3926-3928, 1998.
    [11] Xia, Y., Rogers, J. A., Paul, K. E., and Whitesides, G. M., “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev.99, p.1823-1848, 1999.
    [12] Wood, Philos., “Anomalous diffraction gratings,” Mag. 48, p.928-936, 1902.
    [13] Fano, U., “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces(sommerfeld’s wave),” J. Opt. Soc. Am. 31, p.213-222, 1941.
    [14] 邱國斌, 蔡定平, 金屬表面店將簡介, 物理雙月刊, 廿八卷二期, 2006 年4 月.
    [15] Hutter, E. and Fwndler, J. H., “Exploitation of localized surface plasmon Resonance,” Adv. Mater.16, p.1685-1706, 2004.
    [16] West, C. S., and O’Donnell, K. A., “Scattering by plasmon polaritons on a metal surface with a detuned roughness spectrum” Opt. Lett. 21, p.1-3, 1995.
    [17] Y-K. Kim, J. B. Ketterson, and D. J. Morgan, “Scanning plasmon optical microscope operation in atomic force microscope mode,” Opt. Lett. 21, p.165-167. 1996.
    [18] Tsai, D. P., Lin, W. C., “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett. 77, p.1413-1415, 2000.
    [19] Chiu, K. P., Lin, W. C., Fu, Y. H., Tsai, D. P., “Calculation of surface plasmon effect on optical discs,” Jpn. J. Appl. Phys. 43, p.4730-4735 ,2004.
    [20] Maier, S. A., Plasmonics: fundamentals and applications, Springer, USA (2007).
    [21] Haynes, C., and Van Duyne, R. P., “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. 107, p.7426-7433, 2003.
    [22] Onoda, M., Tada, K., Zakhidov, A. A., Yoshino, K., “Photoinduced charge separation in photovoltaic cell with heterojunction of p- and n-type conjugated polymers,” Thin Solid Films 331, p.76-81,1998.
    [23] Atwater A. H., and Polman, A., “Plasmonics for improved photovoltaic devices,” Natural Materials Rev. 9, p.205-213, 2010.
    [24] Hallermann, F., Rockstuhl, C, Fahr, S., Seifert, G., Wackerow,S., Graener, H., Plessen, V. G., and Falk, “On the use of localized plasmon polaritons in solar cells,” Phys. stat. sol. 205, p.2844-2861, 2008.
    [25] Luo, X., Ma, J., Ishihara. T., “Plasmon-related optical properties of unpenetrated metallic periodic structures,” Opt. Mat. 29 p.211-215, 2006.
    [26] Mafune, F., Kohno, J.-Y.; Takeda, Y.; Kondow, T. “Dissociation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. 105, p.9050-9056, 2001.
    [27] Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A., “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 1019.p.093105, 2007.
    [28] 郭清癸, 黃俊傑, 牟中原, 金屬奈米粒子的製造, 物理雙月刊, 廿三卷六期, 2001 年.
    [29] Ormonde, A. D., Hicks, E. C. M., Castillo, J., and Van Duyne, R. P., “Nanosphere lithography: fabrication of large-area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV-visible extinction spectroscopy.” Langmuir 20, p.6927-6931, 2004.
    [30] Lee, Y. C., Chiu, C. Y., “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching.”J. Micromech. Microeng 18, 075013, 2008.
    [31] Jang, G. Y., Li, Z.,Wu, W., Chen, Y., Olynick, D. L., Wang, S. Y., Tong, W. M., and Williams, R. S.,”Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21, p.1158-1161, 2005.
    [32] Kim, K. H., Song, N. Y., Choo, B. K., Pribat, D., Jang, J., and Park. K. C., “Mechanical characteristics of the hard-Polydimethylsiloxane for smart lithography,” Springer Proceedings in Physics 124, p.229–237, 2008.
    [33] Park, J., Park, J. H., Kim, E., Ahn, C. W., Jang, H. I., Rogers, J. A., and Jeon, S., ”Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,”Adv. Mat. 23, p.860-864, 2011.
    [34] Kang, M. G., and Gua, L. J., “Metal transfer assisted nanolithography on rigid and flexible substrates,” J. Vac. Sci. Technol. 26, p.2421-2425, 2008.
    [35] Chen, C. H. and Lee, Y. C., “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films, 518, p.4786-479, 2010.
    [36] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, p.302-307, 1966.
    [37] Chen, D. K., Fundamentals of engeerring electromagnetics, First edition., Addison-Wesley, (1992).
    [38] Elsherbeni, A. Z., and Demir, V., The finite-difference-time -domain method for electromagnetics with MATLAB simulations, Scitech, (2008).
    [39] Taflove, A., Umashankar, K. R., Beker, B., Harfoush, F., Yee, K. S., “Detail FD-TD analysis of Electromagnetic fields penetrating narrow slots and lapped joints in thick conducting screens,” IEEE Trans. Antennas Propagat. 36, p.247-257, 1988.
    [40] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” JOC. Physics 114, p.185-200, 1994.
    [41] Bohren, F. C. and Huffman, D. R., “Absorption and scattering of light by small particles,”John Wiley & Sons, 1940.
    [42] OptiFDTD, Technical Background and Tutorials,(2008).
    [43] Fahland, M., Vogt, T., Schoenberger. W., Schiller, N., “Optical properties of metal based transparent electrodes on polymer films,” Thin Solid Films 516 , p.5777-5780, 2008.
    [44] Brewer, S. H., and Franzen, S., “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B.106, p.12986-12992, 2002.
    [45] Kang, M. G., Xu, T., Park, H. J., Luo, X., Guo, L. J., “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes,” Adv. Mat. 22, p.4378-4383, 2010.
    [46] Gueymard, C. “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Solar Energy 71, p.325-346, 2001.
    [47] Shin, S. W., Hwang, Y. M., So, W. W., Yoon, S. C., Lee, C. J., Moon, S. J., “Performance of P3HT/C70-PCBM Polymer PhotovoltaicDevices According to Manufacturing Conditions,” Mol. Cryst. Liq. Cryst.491,p. 331-338, 2008.

    下載圖示 校內:2016-08-31公開
    校外:2016-08-31公開
    QR CODE