簡易檢索 / 詳目顯示

研究生: 吳愷
Wu, Kai
論文名稱: 應用電腦輔助分析進行離岸風機群樁於風波流作用下之縮尺模型試驗
Computer-aided analysis on scale-down group pile model of offshore wind turbine subjected to wind and wave loadings
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 131
中文關鍵詞: 離岸風機側向載重樁群樁土壤-結構互制縮尺規則有限元素法ABAQUS
外文關鍵詞: offshore wind turbine, lateral loaded pile, group piles, soil-structure interaction, scaling law, finite element method, ABAQUS
相關次數: 點閱:110下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離岸風機基礎設計須能夠抵抗極端風況下之風力、波浪力與潮流之荷載,在離岸工程中一般常1-g縮尺模型試驗進行動態分析,然而在1-g縮尺模型試驗下會存在縮尺效應,須由數值分析與物理試驗進行驗證,本研究中使用數值分析法簡化風波流為等值力作用於離岸風機結構,並考慮縮尺群樁受側向力之動態土壤-結構互制行為。側向載重樁常見之分析模式有極限分析法、地盤反力法以及數值分析法,而常見基樁之破壞模式有樁身彎矩達降伏應力產生塑性鉸以及周圍土壤發生剪力破壞,樁基礎上方之結構亦不得產生超過設計與規範之位移,本研究以ABAQUS數值分析軟體進行單樁單向荷載與LPILE之分析結果進行比對,數值模型分析結果顯示單樁變形行為位於合理範圍內,而後進行單樁單向於不同彎矩勁度下之縮尺數值分析,結果顯示彎矩勁度的改變對土壤反力影響不大,而不同勁度會影響樁身變位以及彎矩分佈,單樁於單向週期荷載分析中則觀察到永久位移累積的現象,再以縮尺單樁組成群樁基礎,並進行極端風況之風波流作用下群樁基礎縮尺行為分析,其結果顯示極端風況下風力造成之位移約佔90%風機整體位移量,考慮波浪與風向同向而潮流方向則與之正交,在潮流作用下會使群樁平台產生些微扭轉,而潮流力在分析中為最小的作用力,對於群樁整體反應所佔比例很小。本研究簡化了幾何模型與外力條件以用於數值分析,其分析結果尚須物理試驗進行驗證。

    This research is focus on responses of scale-down offshore wind turbine foundation that subjected to wind and wave loadings. Finite element method is adopted to analyze both static and dynamic behaviors of group piles of offshore wind turbines that suffer complicated loadings. The Abaqus code is used in this study to solve complicated and highly non-linear problem including soil-structure-soil interaction that is the center part of pile foundation analysis. Both scale-down and non-scale-down model analyses with the same loadings and boundary conditions are performed and compared to investigate the scaling effect. The results show that the numerical model of single pile under lateral loading is close to the results of LPILE based on p-y method. Scaling down model with different stiffness change the displacement and moment distribution of the pile in same soil property and slightly increase the soil lateral ultimate capacity. Results of group pile under extreme wind and wave loadings reveal that the responses of piles is dominated by wind force and the wave loadings only induces minor effect on the overall system. Last, this research recommends the stiffness reduction ratios for scale-down group pile model design.

    摘要 I EXTENDED ABSTRACT II 誌謝 X 目錄 XI 圖目錄 XV 表目錄 XXI 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究方法與流程 3 1.4 論文架構 4 第 2 章 文獻回顧 5 2.1 離岸風機設計規範與常見離岸風機之結構 5 2.1.1 美國石油協會(API)及海岸工程手冊(CEM)規範 5 2.1.2 IEC 61400-1和IEC 61400-3規範 7 2.1.3 台灣彰化外海風場調查與相關規範 8 2.1.4 常見風力發電機基礎形式 16 2.2 基樁受側向載重分析回顧 18 2.2.1 極限分析法 18 2.2.2 線彈性地盤反力法 23 2.2.3 p-y 曲線法 25 2.2.4 彈性分析法 30 2.2.5 有限元素法 31 2.2.6 基樁受反覆荷重作用 36 2.2.7 群樁效應 38 2.3 海洋環境荷載 39 2.3.1 線性波浪理論(Linear wave theory) 39 2.3.2 Morison Equation 42 2.3.3 潮流力 49 2.3.4 風力 49 第 3 章 分析方法與流程 53 3.1 分析流程 53 3.2 分析軟體 54 3.3 幾何模型規劃 56 3.3.1 實驗場地介紹 56 3.3.2 風機與群樁基礎之數值模型示意圖 57 3.4 無限元邊界設計 59 3.5 接觸設置 61 3.5.1 正向接觸行為 61 3.5.2 切向接觸行為 62 3.5.3 接觸介面測試 63 3.5.4 庫侖摩擦法則 64 3.6 邊界條件與綁定約束 66 3.6.1 半域模型之邊界條件 66 3.6.2 全域模型之邊界條件 67 3.7 材料參數及土壤組構模式 68 3.7.1 土壤組構模式 68 3.8 求解步驟 71 3.8.1 地應力平衡分析步(Geostatic Step) 72 3.8.2 有限元與無限元結合之模型地應力平衡 76 3.8.3 非線性動力學分析 77 3.9 網格元素 79 3.10 荷載方式 81 3.11 後處理 83 3.12 LPILE 使用說明 84 第 4 章 縮尺規則及荷載參數設置 85 4.1 縮尺規則 85 4.2 實驗環境模擬 89 4.2.1 波浪荷載公式與方法 90 4.3 土層材質 92 4.3.1 煤灰特性 92 4.4 實體元素彎矩擷取方式 96 第 5 章 數值模型分析結果 98 5.1 單樁彈塑性土層土壤極限阻抗分析與變形分析 98 5.2 樁底固定與自由之差異 103 5.3 風機之單樁縮尺模型 105 5.4 縮尺單樁於反覆荷重下行為 109 5.5 離岸風機群樁模型 112 5.5.1 群樁於彈性土層之風、波、流作用下的反應 114 5.5.2 群樁於塑性土層之風、波、流作用下的反應 118 5.6 材料尺寸建議 123 第 6 章 結論與建議 124 6.1 結論 124 6.2 建議 125 第 7 章 參考文獻 126

    朱惠君(2000),「側向荷重樁之分線性反應分析」,國立台灣大學土木工程學系研究所,博士論文。
    李淑芬(2010),「水力回填煤灰之大地工程性質」, 國立中央大學土木工程學系研究所,碩士論文。
    Achmus, M., Kuo, Y. S., & Abdel-Rahman, K. (2009). Behavior of monopile foundations under cyclic lateral load. Computers and Geotechnics, 36(5), 725-735.
    API, R. (2007). 2A-WSD 2007. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms–Working Stress Design,American Petroleum Institute.
    Ashour, M., & Norris, G. (2000). Modeling lateral soil-pile response based on soil-pile interaction. Journal of Geotechnical and Geoenvironmental Engineering, 126(5), 420-428.
    Ashour, M., Norris, G., and Pilling, P. (1998). Lateral loading of a pile in layered soil using the strain wedge model. Journal of Geotechnical and Geoenvironmental Engineering, 124(4), paper no. 16004, pp.303-315.
    Briaud, J. L., Smith, T., & Meyer, B. (1984). Laterally loaded piles and the pressuremeter: comparison of existing methods. Laterally Loaded Deep Foundations, ASTM, STP, 835, 97-111.
    Brinch Hansen, J. (1961). The ultimate resistance of rigid piles against transversal forces. Bulletin No. 12, Danish Geotechnical Institute,Copenhagen, Denmark, 5–9.
    Broms, B. B. (1964). Lateral resistance of piles in cohesive soils. JSMFD, 90(2), 123-156.
    Bogard, D., & Matlock, H. (1980). Simplified calculation of p-y curves for laterally loaded piles in sand, The Earth Technology Corporation, Inc., Houston, TX.
    Budhu, M., & Davies, T. G. (1987). Nonlinear analysis of laterality loaded piles in cohesionless soils. Canadian Geotechnical Journal, 24(2), 289-296.
    Chang, Y. L. (1937). Discussion on “lateral pile-loading tests” by LB Feagin. Trans., ASCE, 102, 272-278.
    Chang, K. S. (1964). Transverse Forces on Cylinders Due to Vortex Shedding in Waves, M.A. thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.
    Chen, L., and Poulos, H. G. (1993). Analysis of pile-soil interaction under lateral loading using infinite and finite elements. Computers and Geotechnics, 15(4), 189-220.
    Chakrabarti, S. K. (2005). Handbook of Offshore Engineering, San Francisco: Elsevier.
    Cox, W. R., Dixon, D. A., & Murphy, B. S. (1984). Lateral load tests on 25.4-mm (1-in.) diameter piles in very soft clay in side-by-side and in-line groups. Laterally loaded deep foundations: analysis and performance, ASTM STP, 835, 122-139.
    Dobry, R., Vicente, E., O'Rourke, M., & Roesset, M. (1982). Horizontal stiffness and damping of single piles. Journal of Geotechnical and Geoenvironmental Engineering, 108(GT3).
    Fan, C. C., & Long, J. H. (2005). Assessment of existing methods for predicting soil response of laterally loaded piles in sand. Computers and Geotechnics, 32(4), 274-289.
    Fleming, W. G. K., Weltman, A. J., Randolph, M. F., and Elson, W. K. (1992). Piling engineering. Surrey University Press, London.
    Gasch, R., & Twele, J. (2011). Wind power plants: fundamentals, design, construction and operation. Springer.
    Giannakos, S., Gerolymos, N., and Gazetas, G. (2012). Cyclic lateral response of piles in dry sand: Finite element modeling and validation. Computers and Geotechnics, 44, 116-131.
    Hetenyi, M. (1946) Beams on Elastic Foundation,University of Michigan Press, Ann Arbor, Michigan.
    Helwany, S. (2007). Applied soil mechanics with ABAQUS applications. John Wiley and Sons.
    International Electrotechnical Commission. (2009). IEC 61400-3. Wind Turbines—Part 3: Design Requirements for Offshore Wind Turbines.
    Juirnarongrit, T., and Ashford, S. A. (2001). Effect of Pile Diameter on the Modulus of Sub-grade Reaction. SSRP, 22.
    Kellezi, L., and Hansen, P. B. (2003). Static and dynamic analysis of an offshore mono-pile windmill foundation. In Proceedings of the BGA international conference on foundations: innovations, observations, design and practice, Dundee (pp. 401-410).
    Kuo, Y. S. (2008). On the behavior of large-diameter piles under cyclic lateral load. Eigenverl. IGBE.
    LeBlanc, C. (2009). Design of offshore wind turbine support structures. Doctoral dissertation, Department of Civil Engineering, Aalborg University, Denmark.
    Lesny K., and Wiemann J., (2006). Finite-Element-Modelling of Large Diameter Monopiles for Offshore Wind Energy Converters.Geo Congress 2006, February 26 to March 1, Atlanta, GA, USA.
    Lesny,K.(2008).Foundations for offshore wind energy converters-Recommendations for concept and design. BAUTECHNIK, 85(8), 503-511.
    Malhotra (2011). Selection, Design and Construction of Offshore Wind Turbine Foundations, Wind Turbines, Dr. Ibrahim Al-Bahadly (Ed.), ISBN: 978-953-307-221-0, InTech, Available from:http://www.intechopen.com/books/wind-turbines/selection-design-and-construction-of-offshore-wind-turbinefoundations
    Malhotra, S. (2007, January). Design and construction considerations for offshore wind turbine foundations. In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering (pp. 635-647). American Society of Mechanical Engineers.
    Matlock H., and Reese L. C., 1960. Generalized Solutions for Laterally Loaded Piles. Journal of the Soil Mechanics and Foundations Division, 86(5), pp. 63-91.
    McClelland B., and Focht J. A. Jr., (1958). Soil Modulus for Laterally Loaded Piles.Transactions. ASCE 123: pp. 1049-1086.
    Menetrey, P., and Willam, K. J. (1995). Triaxial failure criterion for concrete and its generalization. ACI structural Journal, 92(3).
    Morison, J. R., Johnson, J. W., and Schaaf, S. A. (1950). The force exerted by surface waves on piles. Journal of Petroleum Technology, 2(05), 149-154.
    O'Neill, M. W., and Murchison, J. M. (1983). An evaluation of py relationships in sands. University of Houston.
    O'Neill, M. W. (1983). Group action in offshore piles. In Proceedings of the Conference on Geotechnical Practice in Offshore Engineering (pp. 25-64).
    Poulos, H. G. (1971). Behavior of laterally loaded piles: I-single piles. Journal of the Soil Mechanics and foundations Division, 97(5), 711-731.
    Poulos, H. G., and Davis, E. H. (1980). Pile foundation analysis and design, Wiley, New York.
    Poulos, H. G. (1988). Marine geotechnics (Vol. 473). London: Unwin Hyman.
    Poulos, H. G., & Hull, T. S. (1989). The role of analytical geomechanics in foundation engineering. In Foundation Engineering@ sCurrent Principles and Practices (pp. 1578-1606). ASCE.
    Reese, L, C., Van Impe, W.F, (2001) Single Piles and Pile Groups Under Lateral Loading, A.A Balkema, Rotterdam, Brookfield.
    Reese, L.C., Cox, W.R., and Koop, F.D., (1974), Analysis of Laterally Loaded in Sand, Proceedings, Six Annual OTC, Vol 2. Paper No. 2080, Houston, Texas.
    RP2A-WSD, A. P. I. (2000, December). Recommended practice for planning, designing and constructing fixed offshore platforms–working stress design–. In Twenty-.
    Sarpkaya, T. (1976). Vortex shedding and resistance in harmonic flow about smooth and rough circular cylinders at high Reynolds numbers. Monterey, California. Naval Postgraduate School.
    Terzaghi K. (1955), Evaluaton of coefficients of subgrade modulus, Geotechnique, V5: 297-326.
    Verdure, L., Garnier, J., & Levacher, D. (2003). Lateral cyclic loading of single piles in sand. International journal of physical modelling in geotechnics, 3(3), 17-28.
    Wang, S. T., & Reese, L. C. (1986). Study of design method for vertical drilled shaft retaining walls. Research Report 415-2F. Center for Transportation Research, Bureau of Engineering Research. University of Texas, Austin.
    Wesselink, B. D., Murff, J. D., Randolph, M. F., Nunez, I. L., & Hyden, A. M. (1988). Analysis of centrifuge model test data from laterally loaded piles in calcareous sand. In Proc. Int. Conf. Calcareous Sediments (pp. 261-270).
    Williams, A. F., Dunnavant, T. W., Anderson, S., Equid, D. W., & Hyden, A. M. (1988). The performance and analysis of lateral load tests on 356 mm dia piles in reconstituted calcareous sand. In Proc. Int. Conf. Calcareous Sediments (pp. 271-280).
    Winkler, E. (1867). Theory of elasticity and strength. Dominicus Prague.
    Y. X. Jie, H. N. Yuan, and H. D. Zhou(2013), “Bending moment calculations for piles based on the finite element method,”Journal of Applied Mathematics, vol. 2013, Article ID 784583, 19 pages.

    下載圖示 校內:2019-09-12公開
    校外:2019-09-12公開
    QR CODE