| 研究生: |
黃登科 Huang, Deng-ke |
|---|---|
| 論文名稱: |
層狀材/聚乳酸奈米複合材料之製備與其性質研究 Study on the Preparation and Properties of the Layered material/poly(lactic acid) nanocomposite |
| 指導教授: |
陳志勇
Chen, Chuh-yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 聚乳酸 、層狀複合材料 、黏土 、水滑石 |
| 外文關鍵詞: | Polylactic acid, Layer nanocomposite, LDH, Clay |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚乳酸為生質材料的一類,由於它的原料可再生及良好的環保性能,相當受到工業及學術界的關注。聚乳酸雖然有良好的機械性質,但其耐熱性差,進而限制其應用範圍和商業化的價值。而利用層狀材與聚乳酸製備得到奈米複合材料正是提升其熱性質的方法。因此,本研究的主要目的是利用有機插層改質黏土與水滑石得到分散型態佳的層狀材/聚乳酸奈米複合材料,強化聚乳酸的機械性質,擴大聚乳酸的應用範圍。
本研究的第一部分為黏土/聚乳酸奈米複合材料。在5wt%添加量下,插層改質黏土(層間距:35.3Å)較一般有機黏土(層間距:20Å)於基材的分散性佳。同時添加插層改質黏土能使聚乳酸由冷結晶行為轉變為結晶行為,提升結晶溫度使結晶排列緊密,進而改善玻璃轉移溫度。利用結晶動力學及偏光顯微鏡分析,添加插層改質黏土能使聚乳酸結晶速率大幅提升100倍,而插層改質劑能扮演晶種提升成核密度使晶型排列較為緊密且一致。同時,黏土/聚乳酸奈米複合材料的氣體透過率則由0.619barrier下降到0.272barrier,成功地的增加聚乳酸的阻氣性。
本研究的第二部分為水滑石/聚乳酸奈米複合材料。插層改質水滑石層間距14.5Å較未改質水滑石(7.8Å)大,且聚乳酸高分子能有效插入改質水滑石層間,使層間距提升至27.6Å。添加插層改質水滑石能提升聚乳酸結晶速率,縮短結晶時間。水滑石/聚乳酸奈米複合材料的氣體透過率則由0.619barrier下降到0.295barrier。
Polylactic acid (PLA) has been attracted attention considerably in industrial and academic due to renewable sources and good environmental performance. PLA has good mechanical properties, but poor in heat resistance, thereby limiting its scope of application and commercial value. Preparation of layered-material/PLA nanocomposites could enhance its thermal property. Therefore, the main purpose in this study was using an organic-intercalated clay and LDH to obtain the well-dispersed layered-material/PLA nanocomposites, and investigated its physical properties.
In the first section of this study was the Clay/PLA nanocomposites preparation. With 5.0 wt% addition, the organic-intercalated clay (basal space: 35.3Å) was well-dispersed in comparison with the commercial organic clay (basal space: 20Å). The organic-intercalated clay showed stronger nucleating effect on PLA from the DSC measurement, and the cold crystallization behavior was not present in the Clay/PLA nanocomposites. Restated, the Clay/PLA nanocomposites have good crystalline and high heat distortion temperature. On the basis of isothermal crystallization and POM analysis, the crystallization rate of the Clay/PLA nanocomposites increased and the crystallize size of PLA was more uniform. For gas barrier analysis, the Clay/PLA nanocomposites dropped from 0.619 to 0.272 barrier. Obviously, the Clay/PLA nanocomposites have better gas barrier than that of traditional PLA.
In the second section of this study was the LDH/PLA nanocomposites preparation. The basal space of the organic-intercalated LDH (14.5Å) was larger than the inorganic LDH (7.8Å). On the basis of isothermal crystallization and POM analysis, the crystallization rate increased and the crystallization time decreased. For gas barrier analysis, the LDH/PLA nanocomposites dropped from 0.619 to 0.295 barrier.
1.徐國財;張立德, 奈米複合材料, 五南文化事業出版社
2. A. Okada, A. Usuki, T. Kurauchi, O. Kamigaito, ACS Symp. Series, 74, 585 (1995)
3. A. Akelah, J. A. Moet, Polym. Sci., 55, 153 (1994)
4. A. Mahieu Sicaud, J. Mering, Perrin Bonnet. Bull. Soc. Milner. Cryistal, 74, 473 (1971)
5. M. Alexandre, P. Dubois, Mater. Sci. Eng., 1, 28 (2000)
6. H. Kopka, K Beneke, J. Lagaly, Colloid Interf. Sci., 123, 427 (1988)
7. S. Carlino, M. Hudson, J. Mater. Chem., 4, 99 (1994)
8. U. Constantino, T. Pinnavaia, J. Inorg. Chem., 34, 883 (1995)
9. U. Constantino, F. Marmottini, M. Nocchetti, R. Vivani, J. Inorg. Chem., 10, 1439 (1998)
10.M. Taibi, A. Souad, N. Jouini, P. Molinié, M. Drillon, J. Mater. Chem., 12, 3238 (2002)
11. J.H. Lee, S.W. Rhee, D.Y Jung, Chem. Mater., 16, 3774 (2004)
12. W. Feitknecht, Helv. Chim. Acta., 25, 131 (1942)
13. W. Feitknecht, Helv. Chim. Acta., 25, 555 (1942)
14. W.T. Reichle, J. Catal., 94, 547 (1985)
15. W.T. Reichle, Chemtech., 16, 58 (1986)
16. E. Suzuki, Y. Ono, Bull. Chem. Soc. Jpn., 61, 1008 (1988)
17. J. Twu, P. Dutta, J. Phys. Chem., 93, 7863 (1989)
18. Y.Z. Feng, L.R. Zhang, D.G. Evans , X. Duan, Chem. Mater., 14, 4286 (2004)
19. F. Rey, V. Fornes, J. Chem. Soc. Faraday Trans., 88, 2233 (1992)
20. F. Cavani, F. Trifiro, A. Vaccari, Catal. Today, 11, 173 (1991)
21. G.J. Ross, H.Kodama, Am. Mineral, 52, 103 (1967)
22. K. Chibwe, W. Jones, J. Chem. Soc. Chem. Commun., 14, 926 (1989)
23. M. Meyn, K. Beneke , G. Lagaly, Inorg. Chem., 29, 5201 (1990)
24. M. Meyn, K. Beneke, G. Lagaly, Inorg. Chem., 32, 1209 (1993)
27. S. Miyata, T. Kumura, Chem. Lett., 2, 843 (1973)
28. S. Miyata, A. Okada, Clays. Clay. Miner., 25, 14 (1977)
29. S. Miyata, Clays. Clay. Miner., 28, 50 (1980)
30. S. Miyata, Clays. Clay. Miner., 31, 305 (1983)
31. E.L. Crepaldi, P.C. Pavan, J. Tronto, J.B. Valim, J. Colloid. Interf. Sci., 248, 429 (2002)
32. CO. Oriakhi, I.V.Farr, M.M. Lerner, J. Mater. Chem., 6, 103 (1996)
33. S. Carlino, M. Hudson, S.W. Husain, J.A. Knowles, Solid State Ionics, 84, 117
(1996)
34. S. Carlino, Solid State Ionics., 98, 7 (1997)
35. M. Hudson, S. Carlino, D.C. pperley, J. Mater. Chem., 5, 323 (1995)
36. E.D. Dimotakis, T. Pinnavaia, Inorg. Chem., 23, 2393 (1990)
37. E. Giannelis, Adv. Mater., 8, 29 (1996)
38. C. Zilg, R. Thompson, R. Millhaupt, J. Finter, Adv. Mater., 11, 49 (1999)
39. T. Pinnavaia, G. Beall, Polymer-Clay Nanocomposites, john Wiley & Sons,
New York (2000)
40.漆宗能;尚文宇, 聚合物/層狀矽酸鹽奈米複合材料理論與實踐, 化學工業出版社
41. X. Huang, W.J. Brittain, Macromolecules, 34, 3255 (2001)
42. M. Kawasumi, A. Usuki, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito, J. Mater. Chem., 8,1174 (1993)
43. Y. Kurokawa, H. Yasuda and A. Oyo, J. Mater. Chem., 15,1481 (1996)
44. CO. Oriakhi, IV. Farr, MM. Lerner, J. Mater. Chem., 6, 103 (1996)
45. L. Liu, Z. Qi, X. J. Zhu, Polym. Sci, 71, 1133 (1999)
46. T. J. Pinnavaia, G. W. Beall, John Willy & Sons (2000)
47. R. A. Vaia, H. Isii and E. P. Giannelis, J. Mater. Chem., 5, 1694 (1996)
48. M. Kato, A. Usuki, A. Okada, J. Appl. Polym. Sci., 66, 1781 (1997)
49. CO. Oriakhi, IV Farr, M.M. Lerner, J. Mater. Chem., 6, 103 (1996)
50. M. Tanaka, I.Y. Park, K. Kuroda, K. Chuzo, Bull. Chem. Soc. Jpn., 62, 3442 (1989)
51. L. Jiang, J. Zhang, M. P. Wolcott, Polymer, 48, 7632 (2007)
52. N. Zhao, S. Shi, G. Lu, M. Wei, J. Physics and Chemistry of Solids, 69, 1564 (2008)
53. M. Avrami, J. Chem. Phys., 7, 1103 (1939)
54. M. Avrami, J. Chem. Phys., 8, 212 (1940)
55. M. Avrami, J. Chem. Phys., 9, 177 (1941)
56. J. Zhang, K. Tashiro, H. Tsuji, A.J. Domb, Macromolecular, 41, 1352 (2008)
57. S. Miyata, Clays. Clay. Miner., 23, 369 (1975)
58. KM. McGrath, Colloid Polym. Sci., 274, 499 (1996)
校內:2109-07-30公開