| 研究生: |
蕭豐書 Hsiao, Feng-Shu |
|---|---|
| 論文名稱: |
應用關聯法則挖掘學習資訊以發展輔助學習系統之研究 |
| 指導教授: |
謝中奇
Hsie, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 信心程度 、學習診斷 、關聯式法則 、輔助學習系統 |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電腦輔助系統在教學應用上的發展,許多研究提出利用學習者的測驗結果分析學習狀態,以診斷出學習者在學習過程中可能存在之學習障礙與問題。過去有學者提出的診斷機制大多僅單純以學習者作答錯誤的資料(負向資料)來進行分析,忽略了某些隱含在作答正確資料(正向資料)上的學習資訊,如學習者在某個測驗題目的答案結果顯示為正確,但實際上對該題目之概念卻是混淆不清,針對此種學習問題便無法透過負向資料來獲得,因此,只分析負向資料並不能完善地評估出學習者的學習狀態。
本研究將信心程度的衡量加入測驗試題設計中,讓學習者針對自己作答的答案額外給予一個肯定的程度,如此所蒐集到的測驗結果除了有作答對、錯的題目資料外還包含學習者對於答題的信心程度,期望透過此衡量機制獲得更多關於學習者學習狀態的資訊。本研究更進一步應用資料探勘方法的關聯法則演算法針對測驗結果進行分析,同時將學習者在作答上錯誤率較高以及信心度偏低的題目取出作為關聯法則的分析資料,企圖從這些資料裡挖掘出隱含在題目中概念間之關聯法則,並配合概念圖的架構對於法則提出合理的學習診斷與建議,教學者便可根據所獲得的學習資訊開發輔助學習教材以補充現有教材內容之不足,讓學習者藉由學習介面獲得學習診斷分析資訊與相關輔助學習教材,以期能達到預防學習犯錯與促進學習成效之目的。
none
Agrawal, R. and Srikant, R. 1994. Fast algorithm for mining association rules in large databases. In Proceedings of 20th International Conference on Very Large Data Bases (pp. 487-499). Santiago, Chile.
Agrawal, R., Umielinski, T. and Swami, A. 1993. Mining association rules between sets of items in large database. In The 1993 ACM SIGMOD International Conference on Management of Data (pp. 207-216). Washington, D.C.
Anderson, D. R., Sweeney, D. J. and Williams, T. A. Statistics For Business and Economics. South-Western, 2002.
Berry, M. J. A. and LinoR, G. S. Data Mining Techniques: for marking, sales, and customer support. 1997.
Chang, Y. C. and Ying, Z. Sequential estimation in variable length computerized adaptive testing. Journal of Statistical Planning and Inference, 121, 249-264, 2004.
Chen, M. S., Han, J. and Yu, P. S. Data mining: an overview from a database perspective. IEEE Trans. on Knowledge and Data Engineering, 8(6), 866-883, 1996. 54
Chou, C. Constructing a computer-assisted testing and evaluation system on the World Wide WebJThe CATES experience. IEEE Transections on Education, 43(3), 266-272, 2000.
Fayyad, U., Shapiro, G. P. and Smyth, P. The KDD process for extracting useful knowledge from volumes of data. Communication of ACM, 39(11), 27-34, 1996.
Frasson, C. and Aimeur, A. Design a multi-strategic intelligent tutoring system for training in industry. Computers in Industry, 37, 153-167, 1998.
Goldsmith, T. E., Johnson, P. J. and Action, W. H. Assessing structural knowledge. Journal of Educational Psychology, 83, 88-96, 1991.
Hatzilygeroudis, I. and Prentzas, J. Using a hybrid rule-based approach in developing an intelligent tutoring system with knowledge acquisition and update capabilities. Expert Systems with Applications, 26, 477-492, 2004.
Hong, T. and Han, I. Knowledge based data mining of news information on the internet using cognitive maps and neural networks. Expert Systems with Applications, 23, 1-8, 2002.
Hong, T. P., Kuo, C. S. and Chi, S. C. Mining association rules from quantitative data. Intelligent Data Analysis, 3, 363-376, 1999.
Hsu, C. S., Tu, S. F. and Hwang, G. J. 1998. A concept inheritance method for learning diagnosis of a network-based testing and evaluation system. In The 7th International Conference on Computer{Assisted Instructions (pp. 602-609). Taipei, Taiwan.
Hwang, G. J. A conceptual map model for developing intelligent tutoring systems. Computers and Education, 40, 217-235, 2003. 55
Hwang, G. J., Hsiao, C. L. and Tseng, C. R. A computer-assisted approach to diagnosing student learning problems in science courses. Journal of Information Science and Engineering, 19, 229-248, 2003.
Jones, M. and Elizabeth, V. Preservice teachers' cognitive frameworks for class management. Teaching and Teacher Education, 11(4), 313-330, 1995.
Lo, J. J., Wang, H. M. and Yeh, S. W. ERects of confidence scores and remedial instruction on prepositions learning in adaptive hypermedia. Computers and Education, 42, 45-63, 2004.
McAleese, R. The knowledge arena as an extension to the concept map: Relection in action. Interactive Learning Environments, 6, 1-22, 1998.
Novak, J. D. Concept mapping: A useful tool for sicence education. Journal of Research in Science Teaching, 27(10), 937-949, 1990.
Park, J., Chen, M. and Yu, P. S. 1995. An eRective hash-based algorithm for mining association rules. In The ACM SIGMOD International Conference on Management of Data (pp. 175-186). San Jose, California.
Petr, D. W. 2000. Measuring (and enhancing?) student confidence with confidence scores. In 30th ASEE/IEEE Frontiers in Education Conference (Vol. T4B, pp. 1-6). Kansas City, MO, USA.
Pyle, D. Data Preparation for Data Mining. Inc. San Francisco, California: Morgan Kaufmann publishers, 1999.
Savasere, A., Omiecinski, E. and Navathe, S. 1995. An efficient algorithm for mining association rules in large databases. In Proceedings of 20th International Conference on Very Large Data Bases (pp. 432-444). Zurich, Switzerland. 56
Toivonen, H. 1996. Sampling large databases for association rules. In Proceedings of International Conference on Very Large Data Bases (pp. 134-145). Bombay, India.
Tsai, C. C., Lin, S. J. and Yuan, S. M. Students' use of web-based concept map testing and strategies for learning. Journal of Computer Assisted Learning, 17, 72-84, 2001.
Zimmaro, D. M. and Cawley, J. M. 1998. Concept map module [online]. Schreyer Institute for Innovation in Learning, The Pennsylvania State University. (http://www.inov8.psu.edu/faculty/cmap.htm)