簡易檢索 / 詳目顯示

研究生: 康雯惠
Kang, Wen-Hui
論文名稱: 心血管代謝疾病風險評估工具相關因子之探討—以參與行動醫院篩檢民眾為例
Risk Assessment for Predicting Cardiometabolic Diseases among Participants of Mobile Hospital Project
指導教授: 陳靜敏
Chen, Ching-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 老年學研究所
Institute of Gerontology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 最佳截止點篩檢工具心血管代謝疾病風險因子行動醫院
外文關鍵詞: optimal cutoff, screening tool, cardiometabolic disease, risk factor, mobile hospital
相關次數: 點閱:140下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:隨著社會經濟結構和生活型態、飲食方式的大幅改變,以及老齡化人口的大量增加,控制高度流行的心血管代謝疾病(代謝症候群、心血管疾病、慢性腎臟疾病、糖尿病)已成為全世界共同的優先問題。透過行動醫院到點健康篩檢服務已在台灣實施多年,被證明是一個有效的方法,然如何以非實驗室為基礎的風險評估工具來識別並早期介入心血管代謝疾病的高風險受檢者尚缺乏本土性研究調查。
    目的:1.探討參與行動醫院篩檢民眾心血管代謝疾病與人口學、身體測量、健康行為之相關因素;2.利用接受者操作特徵曲線(ROC)選擇心血管代謝疾病最佳預測因子及預測臨界值。
    方法:研究使用次級資料分析,資料為收集自參加2014年台南市某區行動醫院篩檢活動的社區民眾,資料來源為健康篩檢活動所彙整的民眾心血管代謝疾病的相關實驗室數據及包括身體測量之健康檢查結果及自陳健康問卷兩個部分之個案資料。分析方法包括獨立樣本t檢定及卡方檢定,並以邏輯式回歸分析找出與心血管代謝疾病與多項危險因子的關連性,再以逐步線性回歸分析係數的找出模型參數的最佳線性組合,後以接受者操作特徵曲線(ROC)確定相關危險因素的截止值,判斷共同的危險因素預測疾病的最佳靈敏度和特異性。
    結果:共分析270名民眾資料,男性及女性比各為139位(51.48%)、131位(48.52%);平均年齡為58.81歲(標準差+9.99)。邏輯式回歸分析顯示與代謝症候群相關風險因子為BMI (β=0.34, p<.0001)、收縮壓(β=0.03, p=.001);心血管疾病相關風險因子為收縮壓(β=.04, p<.000)及個人病史 (β=2.18, p<.000);腎臟病變相關風險因子為嚼檳榔(β= -1.20, p =. 02);糖尿病相關風險因子為不足蔬菜攝取量(β=-0.77, p=. 03);心血管代謝疾病相關風險因子BMI (β=.24, p<.001)、個人病史(β=-1.21, p<.001)、長期服藥史(β=-0.84, p=.01)。
    預測代謝症候群傾向分數公式:Y=-18.037+0.337*BMI+0.030*收縮壓+0.052*腰圍>0.2603;心血管疾病傾向分數公式:Y=-6.438+0.037*收縮壓+2.175*個人病史>0.4044;而心血管代謝疾病傾向分數公式: Y=--4.104+0.235* BMI-1.207*個人病史-0.843*長期服藥>0.5670。
    結論:本研究結果可應用於台南市行動醫院健康篩檢活動於第一階段時即識別高風險者,避免遺漏未來領取報告參加第二階段活動之高風險的心血管代謝疾病者錯失轉介及進行個別衛教的適當時機。

    In high-risk chronic cardiometabolic disease (Cardiovascular Disease [CVD], Ttype 2 diabetes [DM], chronic kidney disease [CKD], Metabolic Syndromes [MS]) have many common risk factors. This study aimed to develop a non-invasive risk factor analysis for identification of people at high risk. Data collected from a cohort participated in a mobile hospital of Tainan of 2014 were secondary analyzed including 139 males (51.48%) and 131 females (48.52%) with the average age of 58.81+9.99 years old. Results of logistic regression analysis indicated that BMI (β=0.34, p<.0001) and systolic blood pressure (β=0.03, p=.001) were best predictors for metabolic syndromes; cardiovascular disease-related risk factors were systolic blood pressure(β=.04, p<.000) and disease history (β=2.18, p<.000); the only predictor for chronic kidney disease was chewing betel nut (β= -1.20, p =. 02), the only predictor for diabetes was not enough vegetables intake (β=-0.77, p=. 03); and general predictors for cardiometabolic disease were BMI (β=.24, p<.001), disease history (β=-1.21, p<.001) and refill medications (β=-0.84, p=.01). Risk-assessment tool can be used for referring the highest risk individuals to health care for whom might be missed if not showed up for the second phase activity.

    中文摘要 i Abstract iii 誌謝 vi 表目錄 ix 圖目錄 xi 第一章 緒論 1 第一節 研究背景與動機 3 第二節 研究目的 5 第二章 文獻回顧 6 第一節 整合性篩檢 6 第二節 心血管代謝疾病 7 第三節 心血管代謝疾病相關風險因子 9 第四節 接受者操作特性曲線 15 第三章 研究方法 24 第一節 研究設計 24 第二節 研究對象 24 第三節 資料收集 24 第四節 變項及疾病定義 26 第五節 資料分析 26 第四章 研究結果 28 第一節 參加行動醫院民眾基本屬性 28 第二節 心血管代謝疾病與基本資料之相關性 39 第三節 影響心血管代謝疾病之因素 51 第四節 影響心血管代謝疾病之傾向分數Propensity ROC曲線 57 第五章 討論 64 第一節 參與行動醫院社區民眾之之基本資料分析 64 第二節 與罹患心血管代謝疾病相關之因子探討 66 第六章 結論與建議 73 第一節 結論 73 第二節 建議 74 第三節 研究限制 74 參考資料 75

    世界衛生組織。取自http://www.who.int/topics/en/
    台灣醫學會(2011)‧2011台灣醫學週 台灣聯合醫學會學術演講會。取自:http://www.fma.org.tw/2011/am_104.html
    臺南市政府衛生局‧102年衛生概況。取自:http://health.tainan.gov.tw/tnhealth/
    國家衛生研究院電子報第 342 期。取自:http://enews.nhri.org.tw/c_index.php
    國家衛生研究院電子報第 438 期。取自:http://enews.nhri.org.tw/c_index.php
    衛生福利部國民健康署‧施政計畫‧取自:http://www.mohw.gov.tw/cht//DOPL/DM1.aspx?f_list_no=76
    衛生福利部國民健康署(2002)‧台灣地區高血壓、高血糖、高血脂盛行率調查。取自: http://www.hpa.gov.tw/BHPNet/Web/Easy/FormCenterShow.aspx?No=201502020001
    衛生福利部國民健康署(2014)‧102年健康促進統計年報手冊。取自:http://www.hpa.gov.tw/BHPNet/Web/Easy/FormCenterShow.aspx?No=201502020001
    衛生福利部國民健康署(2003)‧整合性篩檢服務工作指引。台北,行政院衛生署國民 健康局。
    行政院衛生署國民健康局(2007)‧代謝症候群防治工作手冊。台北,行政院衛生署國民健康局。
    陳郁梅, 龔如媛, 吳思賢, 張梅芳, 鍾蝶起, & 楊燦. (2010). 高屏地區中老年人口學特性, 生活型態與代謝症候群相關性探討. 台灣健康照顧研究學刊, (8), 71+-73.
    林億雄, & 張嘉倩. (2011). 應用 ROC 曲線分析於評估不同篩檢工具分類準確性的研究. 台灣首府大學學報, (2), 125-134.
    周秀娟, & 趙振瑞. (2009). 慢性壓力與代謝症候群的相關性. Taiwan Journal of Dietetics, 1(2), 1-6.
    陳敏麗, & 黃松元. (2005). 某社區民眾糖尿病篩檢中血糖值與糖尿病高危險因子及健康促進生活型態之探討. 衛生教育學報.
    張昌堯, 郭雅音, 陳佑寧, 洪錦墩, 陳榕生, & 廖朝財. (2008). 南投地區中老年人代謝症候群盛行率. Journal of Biomedical & Laboratory Sciences, 20(3&4), 40-46.
    張煥禎, 許詩典, 謝泉發, 王美治, 周騰達, 蕭添木, & 陳右緯. (2010). 平鎮市老年人高膽固醇血症之就醫遵從行為及相關因素探討. 台灣老年醫學暨老年學雜誌, 5(3), 190-203.
    黃俊祺, 洪啟智, 黃尚志, & 陳鴻鈞. (2012). 肥胖與腎臟病. 高雄醫學大學附設中和醫院腎臟內科 內科學誌.
    黃惠屏, 許秀月, 鍾蝶起, 孫建安, 朱基銘, & 楊燦. (2008). 不同族群間代謝症候群相關指標之探討-以屏東地區整合性篩檢民眾為例. 臺灣公共衛生雜誌, 27(3), 250-258.
    黃志芳, 王聖棻, 葉月嬌, 李明和, 陳尚志, & 辜美安. (2012). 臺灣南部中老年人代謝症候群盛行率及其相關因子. 志為護理-慈濟護理雜誌, 11(1), 72-84.
    郭昶甫, 余光輝, 陳右明, 黃兆山, 李虹儀, 沈昱名, & 史麗珠. (2010). 代謝症候群盛行率的性別差異. 台灣醫學, 14(4), 384-392.
    廖俊正, 廖妙淯, 李孟智, 李祥煒, 陳順天, 陳立民, ... & 鍾國屏. (2011). 台中市社區老年人代謝症候群盛行率之調查. 台灣老年醫學暨老年學雜誌, 6(4), 221-231.
    Alssema, M., Newson, R. S., Bakker, S. J., Stehouwer, C. D., Heymans, M. W., Nijpels, G., & Dekker, J. M. (2012). One risk assessment tool for cardiovascular disease, type 2 diabetes, and chronic kidney disease. Diabetes Care, 35(4), 741-748.
    Al-Daghri, N. M., Al-Attas, O. S., Wani, K., Alnaami, A. M., Sabico, S., Al-Ajlan, A., ... & Alokail, M. S. (2015). Sensitivity of various adiposity indices in identifying cardiometabolic diseases in Arab adults. Cardiovascular diabetology, 14(1), 1.
    Arora, P., Vasa, P., Brenner, D., Iglar, K., McFarlane, P., Morrison, H., & Badawi, A. (2013). Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. Canadian Medical Association Journal, 185(9), E417-E423.
    Ashwell, M., Gunn, P., & Gibson, S. (2012). Waist‐to‐height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta‐analysis. Obesity reviews, 13(3), 275-286.
    Bener, A., Yousafzai, M. T., Darwish, S., Al-Hamaq, A. O., Nasralla, E. A., & Abdul-Ghani, M. (2013). Obesity index that better predict metabolic syndrome: body mass index, waist circumference, waist hip ratio, or waist height ratio. Journal of obesity, 2013.
    Badenbroek, I. F., Stol, D. M., Nielen, M. M., Hollander, M., Kraaijenhagen, R. A., de Wit, G. A., ... & de Wit, N. J. (2014). Design of the INTEGRATE study: effectiveness and cost-effectiveness of a cardiometabolic risk assessment and treatment program integrated in primary care. BMC family practice, 15(1), 90.
    Bagheri, N., Gilmour, B., McRae, I., Konings, P., Dawda, P., Del Fante, P., & van Weel, C. (2015). Peer Reviewed: Community Cardiovascular Disease Risk From Cross-Sectional General Practice Clinical Data: A Spatial Analysis. Preventing chronic disease, 12.
    Chang, C. H., Yen, C. H., & Chen, M. Y. (2010). Using principal component analysis to develop a single-parameter screening tool for metabolic syndrome.BMC public health, 10(1), 708.
    Cheong, K. C., Yusoff, A. F., Ghazali, S. M., Lim, K. H., Selvarajah, S., Haniff, J., ... & Mustafa, A. N. (2013). Optimal BMI cut-off values for predicting diabetes, hypertension and hypercholesterolaemia in a multi-ethnic population. Public health nutrition, 16(03), 453-459.
    Cheong, K. C., Ghazali, S. M., Hock, L. K., Yusoff, A. F., Selvarajah, S., Haniff, J., ... & Mustafa, A. N. (2014). Optimal waist circumference cut-off values for predicting cardiovascular risk factors in a multi-ethnic Malaysian population. Obesity research & clinical practice, 8(2), e154-e162.
    Chrousos, G. P. (2000). The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. International Journal of Obesity & Related Metabolic Disorders, 24.
    Coderre, L. I. S. E., Vallega, G. A., Pilch, P. F., & Chipkin, S. R. (1996). In vivo effects of dexamethasone and sucrose on glucose transport (GLUT-4) protein tissue distribution. American Journal of Physiology-Endocrinology and Metabolism, 271(4), E643-E648.
    Després, J. P., Lemieux, I., Bergeron, J., Pibarot, P., Mathieu, P., Larose, E., ... & Poirier, P. (2008). Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arteriosclerosis, thrombosis, and vascular biology, 28(6), 1039-1049
    Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M., Cowan, M. J., Paciorek, C. J., ... & 11.Ezzati, M. (2011). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2• 7 million participants. The Lancet, 378(9785), 31-40.
    DeBoer, M. D. (2013). Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: a need for screening tools to target interventions. Nutrition, 29(2), 379-386.
    Esposito, K., Marfella, R., Ciotola, M., Di Palo, C., Giugliano, F., Giugliano, G., ... & Giugliano, D. (2004). Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. Jama, 292(12), 1440-1446.
    Esteghamati, A., Mousavizadeh, M., Noshad, S., Shoar, S., Khalilzadeh, O., & Nakhjavani, M. (2013). Accuracy of anthropometric parameters in identification of high-risk patients predicted with cardiovascular risk models. The American journal of the medical sciences, 346(1), 26-31.
    Field, A. E., Coakley, E. H., Must, A., Spadano, J. L., Laird, N., Dietz, W. H., ... & Colditz, G. A. (2001). Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Archives of internal medicine, 161(13), 1581-1586.
    Goh, L. G., Dhaliwal, S. S., Welborn, T. A., Lee, A. H., & Della, P. R. (2014). Anthropometric measurements of general and central obesity and the prediction of cardiovascular disease risk in women: a cross-sectional study. BMJ open, 4(2), e004138.
    Hoerger, T. J., Simpson, S. A., Yarnoff, B. O., Pavkov, M. E., Burrows, N. R., Saydah, S. H., ... & Zhuo, X. (2015). The future burden of CKD in the United States: a simulation model for the CDC CKD Initiative. American Journal of Kidney Diseases, 65(3), 403-411.
    Hajifathalian, K., Ueda, P., Lu, Y., Woodward, M., Ahmadvand, A., Aguilar-Salinas, C. A., ... & Farzadfar, F. (2015). A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. The Lancet Diabetes & Endocrinology, 3(5), 339-355.
    Kahn, H. S., Jago, R., Foster, G. D., McMurray, R. G., Buse, J. B., Stadler, D. D., ... & HEALTHY Study Group. (2014). Cardiometabolic risk assessments by body mass index z-score or waist-to-height ratio in a multiethnic sample of sixth-graders. Journal of obesity, 2014.
    Kouvonen, A., Kivimäki, M., Cox, S. J., Cox, T., & Vahtera, J. (2005). Relationship between work stress and body mass index among 45,810 female and male employees. Psychosomatic medicine, 67(4), 577-583.
    Kolterman, O. G., Insel, J., Saekow, M., & Olefsky, J. M. (1980). Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects. Journal of Clinical Investigation, 65(6), 1272.
    Kramer, H., Luke, A., Bidani, A., Cao, G., Cooper, R., & McGee, D. (2005). Obesity and prevalent and incident CKD: the Hypertension Detection and Follow-Up Program. American Journal of Kidney Diseases, 46(4), 587-594.
    Liu, P., Ma, F., Lou, H., & Liu, Y. (2013). The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC public health, 13(1), 629.
    Nambiar, S., Truby, H., Davies, P. S., & Baxter, K. (2013). Use of the waist–height ratio to predict metabolic syndrome in obese children and adolescents.Journal of paediatrics and child health, 49(4), E281-E287.
    Mohamud, W. N. W., Ismail, A. A. S., Khir, A. S. M., Ismail, I. S., Musa, K. I., Kadir, K. A., & Bebakar, W. M. W. (2012). Prevalence of metabolic syndrome and its risk factors in adult Malaysians: results of a nationwide survey. Diabetes research and clinical practice, 96(1), 91-97.
    Miller, B., Fridline, M., Liu, P. Y., & Marino, D. (2014). Use of CHAID Decision Trees to Formulate Pathways for the Early Detection of Metabolic Syndrome in Young Adults. Computational and mathematical methods in medicine, 2014.
    Mutowo, M. P., Owen, A. J., Billah, B., Lorgelly, P. K., Gumbie, K. E., Mangwiro, J. C., & Renzaho, A. M. N. (2015). Burden attributable to Cardiometabolic Diseases in Zimbabwe: a retrospective cross-sectional study of national mortality data. BMC Public Health, 15, 1213.
    Myers, J., McAuley, P., Lavie, C. J., Despres, J. P., Arena, R., & Kokkinos, P. (2015). Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Progress in cardiovascular diseases, 57(4), 306-314.
    O'neill, S., & O'driscoll, L. (2015). Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obesity reviews, 16(1), 1-12.
    Ortiz, A., Covic, A., Fliser, D., Fouque, D., Goldsmith, D., Kanbay, M., ... & Wiecek, A. (2014). Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. The lancet, 383(9931), 1831-1843.
    Peters, S. A., Huxley, R. R., & Woodward, M. (2014). Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events.
    Rosenzweig, J. L., Ferrannini, E., Grundy, S. M., Haffner, S. M., Heine, R. J., Horton, E. S., & Kawamori, R. (2008). Primary prevention of cardiovascular disease and type 2 diabetes in patients at metabolic risk: an endocrine society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 93(10), 3671-3689.
    Rojas-Martínez, R., Aguilar-Salinas, C. A., & Jiménez-Corona, A. (2012). Optimal cutoff points for the detection of undiagnosed type 2 diabetes, hypertension and metabolic syndrome in Mexican adults. salud pública de méxico, 54(1), 13-19.
    Rajput, R., Rajput, M., Bairwa, M., Singh, J., Saini, O., & Shankar, V. (2014). Waist height ratio: A universal screening tool for prediction of metabolic syndrome in urban and rural population of Haryana. Indian Journal of Endocrinology and Metabolism, 18(3), 394.
    Singh, G. M., Danaei, G., Farzadfar, F., Stevens, G. A., Woodward, M., Wormser, D., ... & Di Angelantonio, E. (2013). The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PloS one, 8(7), e65174.
    Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M., Obuchowski, N., ... & Kattan, M. W. (2010). Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, Mass.), 21(1), 128.
    Spolidoro, J. V., Pitrez Filho, M. L., Vargas, L. T., Santana, J. C., Pitrez, E., Hauschild, J. A., ... & Piva, J. P. (2013). Waist circumference in children and adolescents correlate with metabolic syndrome and fat deposits in young adults. Clinical Nutrition, 32(1), 93-97.
    Sun, K., Liu, Y., Dai, M., Li, M., Yang, Z., Xu, M., ... & Ning, G. (2012). Accessing autonomic function can early screen metabolic syndrome. PloS one, 7(8), e43449.
    Tonelli, M., Muntner, P., Lloyd, A., Manns, B. J., Klarenbach, S., Pannu, N., ... & Alberta Kidney Disease Network. (2012). Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. The Lancet, 380(9844), 807-814.
    Van der Meer, V., Nielen, M. M., Drenthen, A. J., Van Vliet, M., Assendelft, W. J., & Schellevis, F. G. (2013). Cardiometabolic prevention consultation in the Netherlands: screening uptake and detection of cardiometabolic risk factors and diseases–a pilot study. BMC family practice, 14(1), 1
    Varma, R., Bressler, N. M., Doan, Q. V., Gleeson, M., Danese, M., Bower, J. K., ... & Turpcu, A. (2014). Prevalence of and risk factors for diabetic macular edema in the United States. JAMA ophthalmology, 132(11), 1334-1340.
    Wang S.H., Wei T.S., & Chen C.P. (2007). Prognostic analysis of patients with blunt chest trauma admitted to an intensive care unit. J Formos Med Assoc, 106(6), 444-451.
    Wilson, P. W. F., & Meigs, J. B. (2008). Cardiometabolic risk: a Framingham perspective. International journal of obesity, 32, S17-S20
    Ware, L. J., Rennie, K. L., Kruger, H. S., Kruger, I. M., Greeff, M., Fourie, C. M. T., ... & Van Rooyen, J. M. (2014). Evaluation of waist-to-height ratio to predict 5 year cardiometabolic risk in sub-Saharan African adults. Nutrition, Metabolism and Cardiovascular Diseases, 24(8), 900-90.
    Yoo, E.-G. (2016). Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean Journal of Pediatrics, 59(11), 425–431.
    Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115(5), 654-657.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE