| 研究生: |
簡士凱 Chien, Shih-Kai |
|---|---|
| 論文名稱: |
晶格波茲曼算則模擬三維蛇型渠道流動特性研究 Lattice Boltzmann Method Simulation of 3D Fluid Flow in Serpentine Channel |
| 指導教授: |
陳朝光
Chen, Cha’o-Kuang 楊玉姿 Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 三維流場 、晶格波茲曼法 、障礙物 、蛇型渠道 |
| 外文關鍵詞: | Lattice Boltzmann Method, serpentine channel, obstacles, three-dimensional flow field |
| 相關次數: | 點閱:92 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶格波茲曼法是近年來一種具有前景的數值運算方法,本文即利用晶格波茲曼法來模擬低雷諾數、不可壓縮、穩態下的三維彎曲蛇型渠道流場,並藉著在渠道內置入不同形狀的障礙物來探討障礙物對流場的影響,藉由此研究來模擬出真實情形下的三微流動情形,作為提升PEMFC效率的基礎研究。為確保流場的適用性及避免太大的壓縮效應,本文所模擬的雷諾數最大為Re=25。
本文所得到的數值流場結果與已發表的實驗值和數值解相當吻合,成功的利用晶格波茲曼法三維模型來模擬流場。置入障礙物的高低與位置在流場中扮演著擾動的角色,改變了局部區域內流體的流動情形,造成垂直方向流動氣體增強,並在障礙物後方形成迴流區,也造成了壓降與摩擦阻抗的變化。垂直方向的擾動有助於蛇型流道質子交換膜燃料電池中,反應氣體進入氣體擴散層,迴流的形成則有助於移除反應生成水。
在二維空間的紙面上清楚地表達三維空間的事物不是容易的事,尤其要描述一個複雜的流場更為困難。因此本文使用煙線圖、速度向量圖來描述流場,以便讀者觀察在蛇型渠道中流場的現象。
The Lattice Boltzmann Method(LBM)is a kind of great potential for numerical calculation. In this study, the LBM was applied to simulate 3D incompressible steady flow under low Reynolds number in serpentine channel, and analyzes the local influence on flow field caused by inserting different type of obstacles. We simulated the true flow situation in 3D channel to regard as the basic research of improving PEMFC efficiency. In order to restrict the simulations to 3D flows, the investigated Reynolds number range is limited to a maximum value of Re = 25.
The present results obtained for the velocity fields are in good agreement with the published experimental and numerical results. We successful simulated of 3D fluid flow by LBM. The obstacles built in channel with different high and location that play the role of causing interruption within the fluid field. The interruption strengthened the vertical direction gas flow in some area and formed the recirculation region behind obstacles. But it also caused the pressure losses and friction variably. The perturbations of the vertical direction contributed to enhance reactant gas enter the gas diffusion layers and the recirculation region help to remove the water from reaction in serpentine channel PEMFC.
It is not easy to express the 3D flow field in 2D papers. It is more difficult to describe complicated flow phenomena. In order to make it easier for the reader to realize the phenomena, 3D streakline are drawn in this study. Through this study, the reader will realized the fundamental phenomena in 3D serpentine channel.
1. Abbassi, Hassen, & Turki, Said., & Nasrallah, Sassi Ben., “Numerical investigation of forced convection in a plane channel with a built-in triangular prism”, Int. J. Therm. Sci., Vol. 40, pp. 649-658, 2001.
2. Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics”, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.
3. Bhatnagar, P.L., & Gross, E.P., & Krook, M., “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems”, Phys. Rev., Vol. 94(3), pp. 511-525, 1954.
4. Breuer, M., & Bernsdorf, J., & Zeiser, T., & Durst, F., “Accurate computations of the laminar flow past a square cylinder based on two different method: lattice-Boltzmann and finite-volume”, Int. J. Heat Fluid Flow., Vol. 94(3), pp. 511-525, 2000.
5. Chakraborty, Jyoti, & Verma, Nishith, & Chhabra, R. P., “Wall effects in flow past a circular cylinder in a plane channel: a numerical study”, Chem. Eng. Process., Vol. 43, pp. 1529-1537, 2004.
6. Chen, Chao-Kuang, & Yen, Tzu-Shuang, & Yang, Yue-Tzu, “Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 49(5-6), pp. 1195-1204, 2006.
7. Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method”, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.
8. Chen, Shiyi, & Martinez, Daniel, “On boundary condition in lattice Boltzmann methods”, Phys. Fluids, Vol. 8(9), pp. 2527-2536, 1996.
9. Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows”, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.
10. d’Humiéres, D., & Lallemand, P., “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions”, Complex Systems, Vol. 1, pp. 599-632, 1987.
11. Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models”, Springer, Germany, 2000.
12. Filippova, Olga, & Hänel, Dieter, “Grid refinement for lattice-BGK models”, J. Comput. Phys., Vol. 147(1), pp. 219-228, 1998.
13. Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows”, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.
14. Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media”, Phys. Rev. E, Vol. 66, pp. 036304, 2002.
15. Guo, Zhaoli, & Zheng, Chuguang, “An extrapolation method for boundary conditions in lattice Boltzmann method”, Phys. Fluids, Vol. 14(6), pp. 2007-2010, 2002.
16. Guo, Z. Y., & Tao, W. Q., & Shah, R. K., “The field synergy (coordination) principle and its application in enhancing single phase convective heat transfer”, Int. J. Heat Mass Transfer, Vol. 48, pp. 1797-1807, 2005.
17. Gupta, Abhishek K., & Sharma, Atul, & Chhabra, Rajendra P., & Eswaran, Vinayak, “Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: Momentum and heat-transfer characteristics”, Ind. Eng. Chem. Res., Vol. 42, pp. 5674-5686, 2003.
18. He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., “A novel thermal model for the lattice Boltzmann in incompressible limit”, J. Comput. Phys., Vol. 146, pp. 282-300, 1998.
19. He, Xiaoyi, & Luo, Li-Shi, “Lattice Boltzmann model for the incompressible Navier-Stokes equation”, J. Stat. Phys., Vol. 88(3/4), pp. 927-944, 1997.
20. He, Xiaoyi, & Luo, Li-Shi, & Dembo, Micah, “Some progress in lattice Boltzmann method. Part1. Nonuniform mesh grids”, J. Comput. Physics, Vol. 129(2), pp. 357-363, 1996.
21. Higuera, F. J., & Jiménez, J., “Boltzmann approach to lattice gas simulations”, Europhys. Lett., Vol. 9(7), pp. 663-668, 1989.
22. Higuera, F. J., & Succi, S., & Benzi, R., “Lattice gas dynamics with enhanced collisions”, Europhys. Lett., Vol. 9(4), pp. 345-349, 1989.
23. Hou, Shuling, & Zou, Qisu, “Simulation of cavity flow by the lattice Boltzmann method” , J. Comput. Phys., Vol. 118, pp. 329-347, 1995.
24. Huang, Kerson, “Statistical mechanics”, John Wiley & Sons, 1987.
25. Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, “A non-slip condition for lattice Boltzmann simulattion”, Phys. Fluids, Vol. 7(12), pp. 2928-2930, 1995.
26. Incropera, Frank P., & DeWitt, David P., “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 2002.
27. Korichi, Abdelkader, & Oufer, Lounes, “Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls”, Int. J. Therm. Sci., Vol. 44, pp. 644-655, 2005.
28. Lin, Z., & Fang, H., & Tao, R., “Improved Lattice Boltzmann Model for Incompressible Two-dimensional Steady Flows”, Phys. Rev. E, Vol. 54, pp. 6323-6330, 1996.
29. Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., “Application of lattice Boltzmann model to simulate microchannel flows”, Physics of Fluids, Vol. 14(7), pp. 2299-2308, 2002.
30. McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata”, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.
31. Munson, Bruce R., & Young, Donald F., & Okiishi, Theodore H., “Fundamentals of fluid mechanics”, Wiley, New York, 1998.
32. Mei, Renwei, & Luo, Li-Shi, “An Accurate curved boundary treatment in the lattice Boltzmann method”, J. Comput. Phys., Vol. 155, pp. 307-330, 1999.
33. Maharudrayya, S., & Jayanti, S., & Deshpande, A. P., “Pressure losses in flow through serpentine channels in fuel cell stacks”, J. of Power Sources, Vol. 138, pp. 1-13, 2004.
34. Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Phys. Fluids, Vol. 7(1), pp. 203-209, 1995.
35. Olson, R. M., “Essentials of Engineering Fluid Mechanics, Fourth Edition”, Harper & Row, New York, 1980.
36. Peng, Y., & Shu, C., & Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Phys. Rev. E, Vol. 68, pp. 026701, 2003.
37. Park, J., & Li, X., “An experimental and numerical investigation on the cross flow through gas diffusion layer in a PEM fuel cell with a serpentine flow channel”, J. of Power Sources, Vol. 163, pp. 853-863, 2007.
38. Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.
39. Shan, Xiaowen, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, Vol. 55, pp. 2780-2788, 1997.
40. Shu, C., & Niu, X. D., & Chew, Y. T., “Taylor-series expansion and least-square-based lattice Boltzmann model: Two dimensional fprmulational and its application”, Phys. Rev. E, Vol. 65, pp. 036708, 2002.
41. Shu, C., & Peng, Y., & Chew, Y. T., “ Simulation of natural convection in a square cavity by Taylor series expansion and least-square-based lattice Boltzmann method”, Int. J. Mod. Phys. C, Vol. 13, pp. 1399-1414, 2002.
42. Skordos, P. A., “Initial and boundary conditions for the lattice Boltzmann method”, Phys. Rev. E, Vol. 48(6), pp. 4823-4842, 1993.
43. Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond”, Oxford university press, New York, 2001.
44. Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics”, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.
45. Tao, Wen Quan., & Guo, Zeng Yuan., & Wang, Bu Xuan, “Field synergy principle for enhancing convective heat transfer-its extension and numerical verification”, Int. J. Heat Mass Transfer, Vol. 45, pp. 3849-3856, 2002.
46. Tao, W. Q., & He, Y. L., & Wang, Q. W., & Qu, Z. G., & Song F. Q., “A unified analysis on enhancing single phase convective heat transfer with field synergy principle”, Int. J. Heat Mass Transfer, Vol. 45, pp. 4871-4879, 2002.
47. Takaji Inamuro, & Masato Yoshino, & Fumimaru Ogino, “Lattice Boltzmann Simulation of Flows in a Three-Dimensional Porous Structure”, Int. J. Numer. Meth. Fluids, Vol. 29, pp. 737-748, 1999.
48. Valencia, Alvaro, “Heat transfer enhancement in a channel with a built-in square cylinder”, Int. Commun. Heat Mass Transf., Vol. 22(1), pp. 47-58, 1995.
49. Wang, L. P., & Behnam Afsharpoya, “Modeling fluid flow in fuel cells using the lattice-Boltzmann approach”, Mathematics and Computwrs in Simulation, Vol.72, pp. 242-248, 2006.
50. Youngseuk Keehm, & Tapan Mukerji, & Amos Nur, “Computational rock physics at the pore scale: transport properties and diagenesis in realistic pore geometries”, The Leading Edge, Vol. 20(2), pp. 180-183, 2001.
51. Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation”, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
52. Zou, Q., & Hou, S., & Chen, S., & Doolen, G. D., “An Incompressible Lattice Boltzmann Model for Time-independent Flows”, J. Stat. Phys., Vol. 81, pp. 35-48, 1995.
53. Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.
54. Zovatto, Luigino, & Pedrizzetti, Gianni, “Flow about a cylinder between parallel walls”, J. Fluid Mech., Vol. 440, pp. 1-25, 2001.
55. 王竹溪,「統計物理學導論」,凡異出版社,1985。
56. 江孟璋,「應用FDLBM方法在高速進給熱傳系統之研究現象」,國立中正大學碩士論文,2003。
57. 汪志誠,「熱力學與統計物理」,凡異出版社,1996。
58. 吳大猷,「理論物理-熱力學、氣體運動及統計力學」,聯經出版社,1979。
59. 祝玉學、趙學龍譯,「物理系統的元胞自動機模擬」,北京清華大學出版社,2003。
60. 胡寬裕,「晶格波茲曼法於複雜幾何邊界之應用」,國立清華大學碩士論文,2003。
61. 郭照立,「模擬不可壓縮流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。
62. 張靚妍,「以晶格波茲曼法模擬液滴衝擊平板之變形過程」,國立中正大學碩士論文,2002。
63. 楊志強,「以晶格波茲曼法模擬共軛熱傳」,國立中正大學碩士論文,2001。
64. 韓光澤、華責、魏耀東,「傳遞過程強化的新途徑-場協同」,自然雜誌24,273-277,2002。
65. 顏子翔,「應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析」,國立成功大學博士論文,2006
66. 孫私于,「應用晶格波茲曼法與場協同理論於流過具障礙物之渠道熱流分析」,國立成功大學碩士論文,2006
67. 郭振坤,「新型複合收集板材料與流道形狀對質子交換膜燃料電池性能增強之研究」,國立成功大學博士論文,2007