| 研究生: |
程品軒 Cheng, Pin-Hsuan |
|---|---|
| 論文名稱: |
研究低緯度之電離層移行擾動與開發自動判別演算法 Study of Medium-Scale Traveling Ionospheric Disturbances in Low-Latitude Ionosphere Using an Automatic Algorithm |
| 指導教授: |
林建宏
Lin, Chien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 低緯度中尺度電離層移行擾動 、支援向量機 、大氣重力波 、散塊E層 |
| 外文關鍵詞: | ow-latitude MSTIDs, Support Vector Machine, Atmospheric Gravity Waves, Sporadic E layers |
| 相關次數: | 點閱:85 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究並統計低緯度電離層赤道異常區之中尺度電離層移行擾動(Medium–Scale Traveling Ionospheric Disturbances, MSTIDs),以及赤道電漿泡(Equatorial Plasma Bubbles, EPBs)。吾人利用中央氣象局餘100個GPS接收站的電離層全電子含量(Total electron content, TEC)資料進行分析,為了要區別以及分類MSTIDs和EPBs,吾人應用三維快速傅立葉轉換和支援向量機演算法來進行自動判別。判別後之統計結果與福爾摩沙衛星三號(Constellation Observing System for Meteorology, Ionosphere, and Climate, COSMIC)演星資料以及高解析度全球大氣耦合模式(Whole Atmosphere Community Climate Model, WACCM)比較討論其季節性特徵以及發生機制,可以得到以下結論:第一,往南向傳的MSTIDs於冬季以及春季時,幾乎於所有的白天到午夜都可以觀測到,且其主要以正南向以及東南向為主;相較而言,於夏季,南向的MSTIDs,在夜晚九點到半夜五點好發,其主要從日本地區傳遞過來且以西南向為主。第二,北向傳的MSTIDs,較多於春季以及夏季的中午至半夜被觀測到,且在春季有著第二波的發生高峰,其可能的發生機制為大氣重力波。第三,赤道電漿泡於四季的發生機率依序為,春季大於秋季,再來是夏季,最後是冬季。
This study investigates the medium–scale traveling ionospheric disturbances (MSTIDs) statistically at the low–latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. I apply both three–dimensional fast Fourier transform (3D–FFT) and support vector machine (SVM) to identify MSTID from other waves or irregularity features, such as equatorial plasma bubble (EPB) from TEC observations by a network of ground-based GNSS receivers around Taiwan. Statistical results together with additional observations from radio occultation of FORMOSAT-3/COSMIC data and neutral atmosphere perturbations from the high–resolution Whole Atmosphere Community Climate Model (WACCM) indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day from 08:00 to 21:00 LT during Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and they are majorly propagating from Japan at mid-latitude region. Second, northward (poleward) MSTIDs are more frequently detected among 12:00 to 21:00 LT in Spring and Summer with secondary occurrence peak during day of year 100 to 140, which is likely connected to the atmospheric gravity waves (AGWs).
Arras, C., J. Wickert, G. Beyerle, S. Heise, T. Schmidt, and C. Jacobi (2008), A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 35, L14809, doi:10.1029/2008GL034158.
Arras, C., C. Jacobi, and J. Wickert (2009): Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes, Ann. Geophys., 27, 2555–2563.
Behnke, R. (1979), F layer height bands in the nocturnal ionosphere over Arecibo, J. Geophys. Res., 84, 974–978, doi:10.1029/JA084iA03p00974.
Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
Chou, M. Y., Lin, C. C., Yue, J., Chang, L. C., Tsai, H. F., & Chen, C. H. (2017). Medium‐scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophysical Research Letters, 44(15), 7569-7577.
Cooley, James W.; Tukey, John W. (1965). "An algorithm for the machine calculation of complex Fourier series". Mathematics of Computation. 19 (90): 297–301. doi:10.1090/S0025-5718-1965-0178586-1. ISSN 0025-5718.
Cosgrove, R. B., and R. T. Tsunoda (2004), Instability of the E‐F coupled nighttime midlatitude ionosphere, J. Geophys. Res., 109, A04305, doi:10.1029/2003JA010243.
Danielson, Gordon C.; Lanczos, Cornelius (1942). "Some improvements in practical Fourier analysis and their application to x-ray scattering from liquids". Journal of the Franklin Institute. 233 (4): 365–380.
Ding, F., W. Wan, G. Xu, T. Yu, G. Yang, and J. Wang (2001), Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China, J. Geophys. Res., 116, A09327, doi:10.1029/2011JA016545.
Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F. (1986). The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. 91,13,723.
Gentile, L. C., Burke, W. J., & Rich, F. J. (2006). A climatology of equatorial plasma bubbles from DMSP 1989–2004. Radio Science, 41(5).
Hernández-ajares, M., J. M. Juan, J. Sanz, and A. Aragón-Àngel(2012), Propagation of medium scale traveling ionospheric disturbances at different latitudes and solor cycle conditions, Radio Sci.,47, RS0K05, doi:10.1029/2011RS004951.
Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441
Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys Space Phys 20(2):293–315. doi:10.1029/RG020i002p00293
Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium‐scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418.
Kotake, N., Otsuka, Y., Ogawa, T., Tsugawa, T., & Saito, A. (2007). Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth, planets and space, 59(2), 95-102.
Lee, C. C., Y. A. Liou, Y. Otsuka, F. D. Chu, T. K. Yeh, K. Hoshinoo, and K. Matunaga (2008), Nighttime medium‐scale traveling ionospheric disturbances detected by network GPS receivers in Taiwan, J. Geophys. Res., 113, A12316, doi:10.1029/2008JA013250.
Liu, H. L., McInerney, J. M., Santos, S., Lauritzen, P. H., Taylor, M. A., & Pedatella, N. M. (2014). Gravity waves simulated by high‐resolution whole atmosphere community climate model. Geophysical Research Letters, 41(24), 9106-9112.
MacDougall, J., M. A. Abdu, I. Batista, R. Buriti, A. F. Medeiros, P. T. Jayachandran, and G. Borba (2011), Spaced transmitter measurements of medium scale traveling ionospheric disturbances near the equator, Geophys. Res. Lett., 38, L16806, doi:10.1029/2011GL048598.
Martinis, C., Baumgardner, J., Mendillo, M., Wroten, J., MacDonald, T., Kosch, M., Lazzarin, M., & Umbriaco, G. (2019). First conjugate observations of medium‐scale traveling ionospheric disturbances (MSTIDs) in the Europe‐Africa longitude sector. Journal of Geophysical Research: Space Physics, 124, 2213– 2222. https://doi.org/10.1029/2018JA026018
Matsuda, T. S., T. Nakamura, M. K. Ejiri, M. Tsutsumi, and K. Shiokawa (2014), New statistical analysis of the horizontal phase velocity distribution of gravity waves observed by airglow imaging, J. Geophys. Res. Atmos., 119, 9707– 9718, doi:10.1002/2014JD021543.
Narayanan, V. L., K. Shiokawa, Y. Otsuka, and S. Saito (2014), Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and iow-latitude limit, J. Geophys. Res. Spce Physics, 119,9268-9282, doi:1002/2014JA020368.
Otsuka, Y., K. Suzuki, S. Nakagawa, M. Nishioka, K. Shiokawa, and T. Tsugawa (2013), GPS observations of medium-scale traveling ionospheric disturbances over Europe, Ann. Geophys., 31,163-172,2013, doi:10.5194/angeo-31-163-2013.
Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218, doi:10.1029/JA078i001p00218.
Rajesh, P. K., J. Y. Liu, C. H. Lin, A. B. Chen, R. R. Hsu, C. H. Chen, and J. D. Huba (2016), Space‐based imaging of nighttime medium‐scale traveling ionospheric disturbances using FORMOSAT‐2/ISUAL 630.0 nm airglow observations, J. Geophys. Res. Space Physics, 121, 4769–4781, doi:10.1002/2015JA022334.
Saito, A., T. Iyemori, L. G. Blomberg, M. Yamamoto, and M. Takeda (1998), Conjugate observations of the mid‐latitude electric field fluctuations with the MU radar and the Freja satellite, J. Atmos. Sol. Terr. Phys., 60, 129–140.
Sun, L., J. Xu, W. Wang, W. Yuan, Q. Li, and C. Jiang (2016), A statistical analysis of equatorial plasma bubble structures based on an all‐sky airglow imager network in China, J. Geophys. Res. Space Physics, 121, 11,495– 11,517, doi:10.1002/2016JA022950.
Takeo, K. Shiokawa, H. Fujinami, Y. Otsuka, T. S. Matsuda, M. K. Ejiri, T. Nakamura, and M. Yamamoto (2017), Sixteen-year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan, J. Geophys. Res. Spce Physics, 122, 7849-9088,2017, doi:10.1002/2017JA023919
Tsunoda, R. T. (2006), On the coupling of layer instabilities in the nighttime midlatitude ionosphere, J. Geophys. Res., 111, A11304, doi:10.1029/2006JA011630.
Tsugawa, T., N. Kotake, Y. Otsuka, and A. Saito (2006a), Medium‐scale traveling ionospheric disturbances observed by GPS receiver network in Japan: A short review, GPS Solutions, 11, 139– 144, doi:10.1007/s10291‐006‐0045‐5.
Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium‐scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America, Geophys. Res. Lett., 34, L22101, doi:10.1029/2007GL031663.
Vadas, S. L., & Fritts, D. C. (2009, January). Reconstruction of the gravity wave field from convective plumes via ray tracing. In Annales Geophysicae (Vol. 27, No. 1, pp. 147-177). Copernicus GmbH.
Yates, Frank (1937). "The design and analysis of factorial experiments". Technical Communication No. 35 of the Commonwealth Bureau of Soils. 142 (3585): 90–92. Bibcode:1938Natur.142...90F. doi:10.1038/142090a0
Yokoyama, T., D. L. Hysell, Y. Otsuka, and M. Yamamoto (2009), Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere, J. Geophys. Res., 114, A03308, doi:10.1029/2008JA013789.
Yokoyama, T., Shinagawa, H., & Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three‐dimensional high‐resolution bubble model. Journal of Geophysical Research: Space Physics, 119(12), 10-474.