簡易檢索 / 詳目顯示

研究生: 連寬宏
Lien, Kuan-Hung
論文名稱: 高溫環境下鋼結構之向量式有限元分析
Vector Form Intrinsic Finite Element Analysis of Steel Structures Exposed to Fire
指導教授: 邱耀正
Chiou, Yaw-Jeng
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 191
中文關鍵詞: 半剛性接頭向量式有限元素法斷裂冷卻火害鋼結構
外文關鍵詞: cooling effect, semi-rigid joint, fire, Vector Form Intrinsic Finite Element (VFIFE), fracture, steel structures
相關次數: 點閱:93下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以向量式有限元素法之理論為基礎,加入熱應變效應,建立平面鋼結構在高溫環境下的數值分析模式。該法有別於傳統的結構分析方法,其計算程序屬向量力學,不需建立結構勁度矩陣亦不需任何的迭代計算。文中同時考慮材料與幾何非線性行為,依鋼材之溫度-應力-應變曲線,以及分別考量升溫與降溫階段之應力變化模式,追蹤平面剛架元素在溫度作用過程中內力的變化結果,以探討鋼結構受火害之行為。另外,本研究進一步將結構接頭以二結點、多自由度彈簧系統、無質量僅具勁度性質之零長度虛擬元素模擬。建立一個可同時考慮軸力、剪力與彎矩具半剛性效應之廣義接頭分析模式,可適用於各種不同類型之接頭,進而擴展向量式有限元素法的應用範圍。
    本文所建立的分析模式,皆先與文獻中相關之數值算例,以及試驗研究結果比較,再進行數值範例研討,以確保分析模式與計算機程式之正確性。經大量且廣泛的驗證結果,顯示本文所建立的鋼結構火害分析與廣義接頭模式結果良好,可有效模擬鋼結構各種不同接頭形式,以及鋼結構受火害過程,分別在升溫與冷卻降溫階段的結構行為。最後,根據本文建立之數值分析模式,分別討論了不同邊界條件對結構在升溫與冷卻階段行為的影響、伴隨地震引發火災與桿件斷裂之結構行為、拱狀結構承載能力隨溫度上升而增加的特殊現象,與結構在火場中桿件逐漸失效之破壞歷程等目前文獻中較少觸及之議題。

    This study adopted the Vector Form Intrinsic Finite Element (VFIFE) method to investigate the nonlinear behavior of steel structures during the heating as well as the cooling phases of fire, and trace the changes in internal element force. The temperature dependent constitutive relations of steel which include strain reversal effects are adopted, and the two-dimensional frame element is employed. In addition, the steel frames with semi-rigid joints are investigated by the method. The structural connections are modeled by the two-node multi-degree of freedom spring system and dummy element with stiffness but without actual mass and length. The proposed model can simulate various joints, and the application of VFIFE was widely extended.
    The numerical model is first verified by comparing the results with the published experimental and analytical results for steel structures. The fire responses of structures, such as the axial restraining effect, buckling of shallow arch, catenary action, fracture of elements in fire caused by an earthquake, cooling effect, and failure behaviors of different members in a fire, are then fully studied. The proposed numerical model can effectively predict the nonlinear behavior of the steel structure in both heating and cooling phases.
    The numerical results also show that the elastic bearing capacity of shallow arch rises with the increase in temperature. The shallow arch deflects upward before buckling with increasing temperature, and its deflection is much smaller than that of the beam structure with the same span. The structure deflects downward after buckling and shows catenary action when it is re-balanced. In the case of fire induced by an earthquake, the deformation of the structure is significantly affected by the aftershock, fire, and fracture of structural elements. In addition, the steel beam without axial constraint will seriously distort due to large displacement when the temperature reaches the critical value. In contrast, the steel beam with axial constraint will suppress the displacement effectively due to the catenary action. However, structures with constraints in fires will induce thermal stresses, and the members of those structures will reach the plastic stage at lower temperatures when they are cooled to room temperature. This phenomenon indicates that these structures will probably reach the plastic phase in the early stage of a fire, and induce a considerable permanent deformation that causes great damage even the fire is put out.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究方法與目的 3 1.3 論文內容與架構 8 第二章 高溫環境下鋼材性能資料 10 2.1 前言 10 2.2 國外高溫環境下鋼材性能資料 10 2.2.1 降伏強度與彈性模數 11 2.2.2 熱膨脹係數 14 2.2.3 單位質量 15 2.3 國內高溫環境下鋼材性能資料 15 第三章 含溫度效應之向量式有限元分析 27 3.1 前言 27 3.2 向量式有限元素法 31 3.2.1 基本假設 31 3.2.2 移動基礎架構 32 3.2.3 基本方程式 33 3.2.4 常溫下平面剛架元素節點內力 35 3.2.5 具溫度效應平面剛架元素節點內力 38 3.2.6 桿件斷裂分析 42 3.3 高溫環境下鋼材之材料性質 44 3.4 數值分析模式與耐火試驗之驗證 45 3.4.1 簡支梁不同載重之耐火試驗 45 3.4.2 受壓鋼柱具軸向溫差之耐火試驗 46 3.4.3 鋼結構耐火試驗 47 3.5 不同軸向束制鋼梁之耐火行為 48 3.5.1 斷面溫度分佈之影響 48 3.5.2 懸鍊線效應 49 3.5.3 熱挫屈效應 50 3.6 單層雙跨鋼結構在不同火災情境下之行為 53 3.6.1 鋼結構局部受火行為 53 3.6.2 鋼結構全面受火行為 54 3.7 地震與火害聯合作用下之斷裂分析 54 3.7.1 單跨雙層鋼結構全面受火之地震與斷裂分析 55 3.7.2 五層三跨鋼結構局部受火之地震與斷裂分析 56 3.8 拱狀結構受火害行為分析 59 3.8.1 高溫環境下兩桿平面靜定桁架之彈性挫屈分析 60 3.8.2 Williams toggle frame高溫環境下之穩定性分析 61 3.8.2.1 定溫加載之彈性挫屈分析 61 3.8.2.2 桿件角度之影響 62 3.8.2.3 不同邊界條件之影響 63 3.8.2.4 定載升溫之非線性穩定性分析 64 3.8.3 淺拱之非線性穩定性分析 65 第四章 鋼結構火害後冷卻階段之行為 110 4.1 前言 110 4.2 冷卻階段材料組成率與溫度變化之關係 111 4.3 高溫環境下鋼材之材料性質 112 4.4 數值分析模式之驗證 112 4.4.1 斷面非均溫簡支梁火害後之數值分析 113 4.4.2 簡支梁含冷卻之耐火試驗 114 4.4.3 簡支柱含冷卻之耐火試驗 116 4.5 不同軸向束制鋼梁火害後之冷卻行為 118 4.6 鋼柱火害後之冷卻行為 120 4.7 五層三跨鋼結構火害後之冷卻行為 122 4.7.1 受局部火害鋼結構之定溫冷卻分析 123 4.7.2 鋼結構火害中桿件逐漸失效之歷時分析 124 第五章 結論與建議 144 參考文獻 149 附錄A:半剛性接頭之向量式有限元分析 161 A.1 前言 161 A.2 廣義接頭之運動方程式 163 A.3 結果與討論 166 A.3.1 含彈性支承柱之幾何非線性反應分析 166 A.3.2 含半剛性支承梁之靜力與動力幾何非線性反應分析 167 A.3.3 含半剛性接頭之單層門型剛架彈性挫屈分析 168 A.3.4 含半剛性接頭之雙層剛架彈性穩定性分析 169 A.3.5 Williams toggle frame之穩定性分析 169 A.3.6 含非線性柔性接頭與支承之鋼結構的分析 171 A.3.6.1 單層門型剛架之非線性分析 171 A.3.6.2 單跨三層剛架之非線性分析 172 A.3.7 含半剛性接頭非彈性平面剛架之斷裂分析 172

    1. Abdalla, K. M., and Chen, W. F. “Expanded database of semi-rigid steel connections.” Computers and Structures, Vol. 56, No. 4, pp. 553-564, 1995.
    2. AISC. Specification for structural steel buildings. American Institute of Steel Construction, 2005.
    3. Ali, H. M., Senseny, P. E., and Alpert, R. L. “Lateral displacement and collapse of single-story steel frames in uncontrolled fires.” Engineering Structures, Vol. 26, pp. 593-607, 2004.
    4. ASTM E119. Standard Test Methods for Fire Tests of Building Construction and Materials. American Society for Testing and Materials, United States, 2000.
    5. Bailey, C. “Computer modeling of the corner compartment fire test on the large-scale Cardington test frame.” Journal of Constructional Steel Research, Vol. 48, pp. 27-45, 1998.
    6. Bailey, C. G. “Development of computer software to simulate the structure behaviour of steel-framed buildings in fire.” Computers and Structures, Vol. 67, pp. 421-38, 1998.
    7. Bailey, C. G., Burgess, I. W., and Plank, R. J. “Computer simulation of a full-scale structural fire test.” Journal of Structural Engineering-ASCE, Vol. 74, No. 6 pp. 93-100, 1996.
    8. Bailey, C. G., Burgess, I. W., and Plank, R. J. “The lateral–torsional buckling of unrestrained steel beams in fire.” Journal of Constructional Steel Research, Vol. 36, No. 2, pp. 101-19, 1996.
    9. Bailey, C. G.., Burgess, I. W., and Plank, R. J. “Analyses of the effects of cooling and fire spread on steel-framed buildings.” Fire Safety Journal, Vol. 26, pp. 273-293, 1996.
    10. Barsan, G. M., and Chiorean, C. G.. “Computer program for large deflection elasto-plastic analysis of semi-rigid steel frameworks.” Computers and Structures, Vol. 72, pp. 699-711, 1999.
    11. Becker, R. “Structural behavior of simple steel structures with non-uniform longitudinal temperature distributions under fire conditions.” Fire Safety Journal, Vol. 37, pp. 495-515, 2002.
    12. Bernuzzi, C., Zandonini, R., and Zanon, P. “Experimental analysis and modelling of semi-rigid steel joints under cyclic reversal loading.” Journal of Constructional Steel Research, Vol. 38, No. 2, pp. 95-123, 1996.
    13. Boley, B. A., and Weiner, J. H. Theory of Thermal Stress, John Wiely & Sons, New York, 1960.
    14. Brown, N. D., and Anderson, D. “Structural properties of composite major axis end plate connections.” Journal of Constructional Steel Research, Vol. 57, pp. 327-349, 2001.
    15. BS5950. Structural use of steelwork in building. Part 8. Code of practice for fire resistant design. British Standard Institution, 2003.
    16. Buchanan, A. H. Structural Design for Fire Safety. John Wiley & Sons, England, 2001.
    17. Buchanan, A., Moss, P., Seputro, J. and Welsh, R. “The effect of stress-strain relationships on the fire performance of steel beams.” Engineering Structures, Vol. 26, pp. 1505-1515, 2004.
    18. Chan, S. L. “Vibration and modal analysis of steel frames with semi-rigid connections.” Engineering Structures, Vol. 16, No. 1, pp. 25-31, 1994.
    19. Chan, S. L., and Ho, G. W. M. “Nonlinear vibration analysis of steel frames with semirigid connections.” Journal of Structural Engineering-ASCE, Vol. 120, No. 4, pp. 1075-1087, 1994.
    20. Chen, H., and Liew, J. Y. R. “Explosion and fire analysis of steel frames using mixed element approach.” Journal of Engineering Mechanics-ASCE, Vol. 131, No. 6, pp. 606-616, 2005.
    21. Chen, J., and Young, B. “Cold-formed steel lipped channel columns at elevated temperatures.” Engineering Structures, Vol. 29, pp. 2445-2456, 2007.
    22. Chiou, Y. J., and Hsiao, P. A. “Large displacement analysis of cyclically loaded inelastic structures.” Journal of Engineering Mechanics-ASCE, Vol. 131, No. 12, pp. 1803-1810, 2005.
    23. Chopra, A. K. Dynamics of structures – theory and applications to earthquake engineering. NJ: Prentice-Hall, 2001.
    24. Chui, P. P. T., and Chan, S. L. “Transient response of moment-resistant steel frames with flexible and hysteretic joints.” Journal of Constructional Steel Research, Vol. 39, No. 3, pp. 221-243, 1996.
    25. Cong, S. P., Liang, S. T., and Dong, Y. L. “Experimental investigation of behavior of simple supported steel beams under fire.” Journal of Southeast University (Natural Science Edition), Vol. 35(Sup I), pp. 66-68, 2005.
    26. Del Savio, A. A., Andrade, S. A. L. de., Vellasco, P. C. G. da S., and Martha, L. F. ”A non-linear system for semi-rigid steel portal frame analysis.” Proceedings of the seventh international conference on computational structures technology – CST2004, Vol. 1, pp. 1-12, 2004.
    27. Del Savio, A.A. , Vellasco, P.C.G. da S. , Andrade, S.A.L. de , Martha, L.F. “Structural evaluation on semi-rigid steel portal frames.” Proceedings of Eurosteel 2005, Forth European conference on steel and composite structures, Maastricht, Holand, Vol. A, pp. 4.49-4.56, 2005.
    28. Dissanayake, U. I., Burgess, I. W., and Davison, J. B. “Modelling of plane composite frames in unpropped construction.” Engineering Structures, Vol. 22, pp. 287-303, 2000.
    29. Driemeier, L., Proenca, S. P. B., and Alves, M. “A contribution to the numerical nonlinear analysis of three-dimensional truss systems considering large strains, damage and plasticity,” Communications in Nonlinear Science and Numerical Simulation, Vol. 10, pp. 515-535, 2005.
    30. ECCS. Technical Committee 3. European Recommendations for the Fire Safety of Steel Structures. European Convention for Constructional Steelwork, 1983.
    31. Elghazouli, A. Y., and Izzuddin, B. A. “Analytical assessment of the structural performance of composite floors subject to compartment fires.” Fire Safety Journal, Vol. 36, pp. 769-793, 2001.
    32. Elghazouli, A. Y., and Izzuddin, B. A. “Analytical assessment of the structural performance of composite floors subject to compartment fires.” Fire Safety Journal, Vol. 36, pp. 769-793, 2001.
    33. El-Rimawi, J. A., Burgess, I. W., and Plank, R. J. “Studies of the behavior of steel subframes with semi-rigid connections in fire.” Journal of Constructional Steel Research, Vol. 49, pp. 83-98, 1999.
    34. El-Rimawi, J. A., Burgess, I. W., and Plank, R. J. “The treatment of strain reversal in structural members durig the cooling phase of a fire.” Journal of Constructional Steel Research, Vol. 37, No. 2, pp. 115-135, 1996.
    35. Eurocode 3 Annex J (revised). Joints in building frames, European Prestandard, ENV 1993-1-1:1992/A2, CEN Brussels, Belgium, 1998.
    36. Eurocode 3. Design of steel structures - Part 1.2: General rules - Structural fire design. British Standard Institution, 2001.
    37. Franssen, J. M. “The unloading of building materials submitted to fire.” Fire Safety Journal, Vol. 16, pp. 213-227, 1990.
    38. Franssen, J. M., Kodur, V. K. and Mason, J. User’s manual for SAFIR 2001: A computer program for analysis of structures submitted to the fire. Belgium: University of Liege; 2002.
    39. Gillie, M, Usmani, A. S., Rotter, J. M., and O’Connor, M. A. “Modeling of heated composite floor slabs with reference to the Cardington experiments.” Fire Safety Journal, Vol. 36, pp. 745-767, 2001.
    40. Gillie, M., Usmani, A. S., and Rotter, J. M. “A structural analysis of the Cardington British steel corner test.” Journal of Constructional Steel Research Vol. 58, pp. 427-442, 2002.
    41. Ginda, G., and Skowronski, W. “Elasto-plastic creep behavior and load capacity of steel columns during fire.” Journal of Constructional Steel Research, Vol. 46, pp. 312-313, 1998.
    42. Green, T. P., Leon, R. T., and Rassati, G. A. “Bidirectional tests on partially restrained, composite beam-to-column connections.” Journal of Structural Engineering-ASCE, Vol. 130, No. 2, pp. 320-327, 2004.
    43. Guo, S. X., and Li, G. Q. “Analysis of restrained steel beams subjected to temperature increasing and descending Part II: Validation and parametrical analyses.” Journal of Disaster Prevention and Mitigation Engineering Vol. 26, No. 4, pp. 359-368, 2006.
    44. Huang, Z. F., and Tan, K. H. “Analytical fire resistance of axially restrained steel columns.” Journal of Structural Engineering-ASCE, Vol. 129, No. 11, pp. 1531-1537, 2003.
    45. Huang, Z. F., and Tan, K. H. “Effects of external bending moments and heating schemes on the responses of thermally restrained steel columns.” Engineering Structures, Vol. 26, pp. 769-780, 2004.
    46. Huang, Z. F., and Tan, K. H. “Structural responses of axially restrained steel beams with semirigid moment connection in fire.” Journal of Structural Engineering-ASCE, Vol. 131, No. 4, pp. 541-551, 2005.
    47. Huang, Z. F., Tan, K. H., and Ting, S. K. “Heating rate and boundary restraint effects on fire resistance of steel columns with creep.” Engineering Structures, Vol. 28, pp. 805-817, 2006.
    48. Huang, Z., Burgess, I. W., and Plank, R. J. “Three-dimensional analysis of composite steel-framed buildings in fire.” Journal of Structural Engineering-ASCE Vol. 126, No. 3, pp. 389-397, 2000.
    49. Huber, G., and Tschemmernegg, F. “Modelling of beam-to-column joints.” Journal of Constructional Steel Research, Vol. 45, No. 2, pp. 199-216, 1998.
    50. ISO 834. Fire-resistance tests- elements of building construction-Part1: general requirement. International Organization for Standardization, Switzerland, 1999.
    51. Iu, C. K., and Chan, S. L. “A simulation-based large deflection and inelastic analysis of steel frames under fire.” Journal of Constructional Steel Research, Vol. 60, pp. 1495-1524, 2004.
    52. Iu, C. K., Chan, S. L., and Zha, X. X. “Nonlinear pre-fire and post-fire analysis of steel frames.” Engineering Structures, Vol. 27, pp. 1689-1702, 2005.
    53. Izzuddin, B. A., and Elnashani, A. S. “Eulerian formulation for large displacement analysis of space frames.” Journal of Engineering Mechanics-ASCE Vol. 119, No. 3, pp. 549-569, 1993.
    54. Izzuddin, B. A., Song, L., Elnashani, A. S., and Dowling, P. J. “An integrated adaptive environment for fire and explosion analysis of steel frames- part II: verification and application.” Journal of Constructional Steel Research, Vol. 53, No. 1, pp. 87-111, 2000.
    55. Kattner, M., and Crisinel, M. “Finite element modelling of semi-rigid composite joints.” Computers and Structures, Vol. 78, pp. 341-353, 2000.
    56. Kawashima, S., and Fujimoto, T. “Vibration analysis of frames with semi-rigid connections.” Computers and Structures, Vol. 19, pp. 85-92, 1984.
    57. Keulen, D. C. van., Nethercot, D. A., Snijder, H. H., and Bakker, M. C. M., “Frame analysis incorporating semi-rigid joint action : Applicability of the half initial secant stiffnes approach.” Journal of Constructional Steel Research, Vol. 59, pp. 1083-1100, 2003.
    58. Kruger, T. S., Rensburg, B. W. J. van., and Plessis, G. M. “Non-linear analysis of structural steel frames.” Journal of Constructional Steel Research, Vol. 34, pp. 285-306, 1995.
    59. Lamont, S., Usmani, A. S., and Drysdale, D. D. “Heat transfer analysis of the composite slab in the Cardington frame fire tests.” Fire Safety Journal, Vol. 36, pp. 815-839, 2001.
    60. Landesmann, A., Batista, E. M. and Alves, J. L. D. “Implementation of advanced analysis method for steel-framed structures under fire conditions.” Fire Safety Journal, Vol. 40, pp. 339-366, 2005.
    61. Lennon, T., and Moore, D. “The natural fire safety concept—full-scale tests at Cardington.” Fire Safety Journal, Vol. 38, pp. 623-643, 2003.
    62. Li, G. Q., and Guo, S. X. “Analysis of restrained steel beams subjected to temperature increasing and descending Part I: Theory.” Journal of Disaster Prevention and Mitigation Engineering, Vol. 26, No. 3, pp. 241-250, 2006.
    63. Li, G. Q., and Guo, S. X. “Experiment on restrained steel beams subjected to heating and cooling.” Journal of Constructional Steel Research, Vol. 64, pp. 268-274, 2008.
    64. Li, G. Q., and Jiang, S. C. “Prediction to nonlinear behavior of steel frames subjected to fire.” Fire Safety Journal, Vol. 32, No. 4, pp. 347-368, 1999.
    65. Li, T. Q., Choo, B. S., and Nethercot, D. A. “Connection element method for the analysis of semi-rigid frames.” Journal of Constructional Steel Research, Vol. 32, pp. 143-171, 1995.
    66. Li, X. D., Dong, Y. L., and Lv, J. L. “Experimental investigation of the behaviors of axially loaded H-section steel column under fire.” Journal of Experimental Mechanics, Vol. 20, No. 3, pp. 328-334, 2005.
    67. Liew, J. Y. R., and Chen, H. “Explosion and fire analysis of steel frames using fiber element approach.” Journal of Structural Engineering-ASCE, Vol. 130, No. 7, pp. 991-1000, 2004.
    68. Liew, J. Y. R., Tang, L. K., Holmaas Tore, and Choo, Y. S. “Advanced analysis for the assessment of steel frames in fire.” Journal of Constructional Steel Research, Vol. 47, pp. 19-45, 1998.
    69. Lim, J. B. P., and Young, B. “Effects of elevated temperatures on bolted moment-connections between cold-formed steel members.” Engineering Structures, Vol. 29, pp. 2419-2427, 2007.
    70. Liu, T. C. H., Fahad, M. K., and Davies, J. M. “Experimental investigation of behavior of axially restrained steel beams in fire.” Journal of Constructional Steel Research, Vol. 58, pp. 1211-1230, 2002.
    71. Lui, E. M., and Chen, W. F. “Behavior of braced and unbraced semi-rigid frames.” International Journal of Solids and Structures, Vol. 24, No. 9, pp. 893-913, 1988.
    72. Ma, K. Y., and Liew, J. Y. R. “Nonlinear plastic hinge analsis of three-dimensional steel frames in fire.” Journal of Structural Engineering-ASCE, Vol. 130, No. 7, pp. 981-990, 2004.
    73. Mageirou, G. E., and Gantes, C. J. “Buckling strength of multi-story sway, non-sway and partially-sway frames with semi-rigid connections.” Journal of Constructional Steel Research, Vol. 62, pp. 893-905, 2006.
    74. Meek, J. L., and Xue, Q., “A study on the instability problem for 2D-frames,” Computer Methods in Applied Mechanics Engineering, Vol. 136, pp. 347-361, 1996.
    75. Mesquita, L. M. R., Piloto, P. A. G., Vaz, M. A. P., and Vila Real, P. M. M. “Experimental and numerical research on the critical temperature of laterally unrestrained steel I beams.” Journal of Constructional Steel Research, Vol. 61, pp. 1435-1446, 2005.
    76. Mondkar, D. P. and Powell, G. H. “Finite element analysis of non-linear static and dynamic response.” International Journal of Numerical Methods in Engineering, Vol. 11, pp. 499-520, 1977.
    77. Najjar, S. R., and Burgess, I. W. “A nonlinear analysis for three-dimensional steel frames in fire conditions.” Engineering Structures, Vol. 18, pp. 77-89, 1996.
    78. Ng, K. T., and Gardner, L. “Buckling of stainless steel columns and beams in fire.” Engineering Structures, Vol. 29, pp. 711-730, 2007.
    79. Papadrakakis, M. “Post-buckling analysis of spatial structures by vector interation methods.” Computers and Structures, Vol. 14, No. 5-6, pp. 393-402, 1981.
    80. Proe, D. J., Bennetts, I. D., Thomas, I. R. and Szeto, W. T. Handbook of fire protection materials for structure steel. Australian Institute of Steel Construction, October,1989.
    81. Raftoyiannis, I. G. “The effect of semi-rigid joints and an elastic bracing system on the buckling load of simple rectangular steel frames.” Journal of Constructional Steel Research, Vol. 61, pp. 1205-1225, 2005.
    82. Rodrigues, F. C., Saldanha, A. C., and Pfeil, M. S. “Non-linear analysis of steel plane frames with semi-rigid connections.” Journal of Constructional Steel Research, Vol. 46, pp. 94-97, 1998.
    83. Rodrigues, J. P. C., Neves, I. C., and Valente, J. C. “Experimental research on the critical temperature of compressed steel elements with restrained thermal elongation.” Fire Safety Journal, Vol. 35, pp. 77-98, 2000.
    84. Rubert, A., and Schaumann, P. “Structural steel and plane frame assemblies under fire action.” Fire Safety Journal, Vol. 10, pp. 173-184, 1986.
    85. Sanad, A. M., Lamont, S., Usmani, A. S., and Rotter, J. M. “Structural Behavior in Fire Compartment under Different Heating Regimes-Part 1 (Slab Thermal Gradients)” Fire Safety Journal, Vol. 35, pp. 99-116, 2000a.
    86. Sanad, A. M., Lamont, S., Usmani, A. S., and Rotter, J. M. “Structural Behavior in Fire Compartment under Different Heating Regimes-Part 2 (Slab Mean Temperatures)” Fire Safety Journal, Vol. 35, pp. 117-130, 2000b.
    87. Sanad, A. M., Rotter, J. M., Usmani, A. S.,and O’Connor, M. A. “Composite beams in large buildings under fire-numerical modeling and structural behavior.” Fire Safety Journal, Vol. 35, pp. 165-188, 2000c.
    88. Shih, C., Wang, Y. K. and Ting, E. C. “Fundamentals of a vector form intrinsic finite element : Part III. Convected material frame and examples.” Journal of Mechanics, Vol. 20, No. 2, pp. 133-143, 2004.
    89. Song, L., Izzuddin, B. A., Elnashani, A. S. and Dowling, P. J. “An integrated adaptive environment for fire and explosion analysis of steel frames- part I: analytical models.” Journal of Constructional Steel Research, Vol. 53, No. 1, pp. 63-85, 2000.
    90. Sophianopoulos, D. S. “The effect of joint flexibility on the free elastic vibration characteristics of steel plane frames.” Journal of Constructional Steel Research, Vol. 59, pp. 995-1008, 2003.
    91. Souza Junior, V., and Creus, G. J. “Simplified elastoplastic analysis of general frames on fire.” Engineering Structures, Vol. 29, pp. 511-518, 2007.
    92. Tan, K. H., and Huang, Z. F. “Structural responses of axially restrained steel beams with semirigid moment connection in fire.” Journal of Structural Engineering-ASCE, Vol. 131, No. 4, pp. 541-551, 2005.
    93. Tan, K. H., Ting, S. K., and Huang, Z. F. “Visco-elasto-plastic analysis of steel frames in fire.” Journal of Structural Engineering-ASCE, Vol. 128, No. 1, pp. 105–114, 2002.
    94. Ting, E. C., Shih, C. and Wang, Y. K. “Fundamentals of a vector form intrinsic finite element : Part I. Basic procedure and a plane frame element.” Journal of Mechanics, Vol. 20, No. 2, pp. 113-122, 2004a.
    95. Ting, E. C., Shih, C. and Wang, Y. K. “Fundamentals of a vector form intrinsic finite element : Part II. Plane solid elements.” Journal of Mechanics, Vol. 20, No. 2, pp. 123-132, 2004b.
    96. Toh, W. S., Fung, T. C., and Tan, K. H. “Fire resistance of steel frames using classical and numerical methods.” Journal of Structural Engineering-ASCE Vol. 127, No. 7, pp. 829-838, 2001.
    97. Toh, W. S., Tan, K. H., and Fung, T. C. “Compressive resistance of steel columns in fire : Rankine Approach.” Journal of Structural Engineering-ASCE, Vol. 126, No. 3, pp. 398-405, 2000.
    98. Toh, W. S., Tan, K. H., and Fung, T. C. “Strength and stability of steel frames in fire : Rankine Approach.” Journal of Structural Engineering-ASCE, Vol. 127, No. 4, pp. 461-469, 2001.
    99. Usmani, A. S. “Sability of World Trade Center Twin Towers structural frames in multiple foor fires.” Journal of Engineering Mechanics-ASCE, Vol. 131, No. 6, pp. 654-657, 2005.
    100. Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M. and Gillie, M. “Fundamental principles of structural behavior under thermal effects.” Fire Safety Journal, Vol. 36, pp. 721-744, 2001.
    101. Wang, Y. C. “An analysis of the global structural behaviour of the Cardington steel-framed building during the two BRE fire tests.” Engineering Structures Vol. 22, pp. 401-412, 2000.
    102. Wang, Y. C. “Postbuckling behavior of axially restrained and axially loaded steel columns under fire conditions.” Journal of Structural Engineering-ASCE, Vol. 130, No. 3, pp. 371-380, 2004.
    103. Wang, Y. C., and Moore, D. B. “Steel frames in fire: analysis.” Engineering Structures, Vol. 17, No. 6, pp. 462-472, 1995.
    104. Williams, F. W. “An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections.” Quarterly Journal of Mechanics and Applied Mathematics, Vol. 17, pp. 451-469, 1964.
    105. Wood, R. D., and Zienkiewicz, O. C. “Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells.” Computers and Structures, Vol. 7, pp. 725-735, 1977.
    106. Yang, T. Y. and Saigal, S. “A simple element for static and dynamic response of beams with material and geometric nonlinearities.” International Journal of Numerical Methods in Engineering, Vol. 20, pp. 851-867, 1984.
    107. Yang, Y. B., and Chiou, H. T. “Analysis with beam elements.” Journal of Engineering Mechanics- ASCE, Vol. 113, pp. 1404-1419, 1987.
    108. Yau, C. Y., and Chan, S. L. “Inelastic and stability analysis of flexibly connected steel frames by springs-in-series model.” Journal of Structural Engineering-ASCE, Vol. 120, No. 10, pp. 2803-2819, 1994.
    109. Yin, Y. Z, and Wang, Y. C. “A numerical study of large deflection behaviour of restrained steel beams at elevated temperatures.” Journal of Constructional Steel Research, Vol. 60, pp. 1029-1047, 2004.
    110. Zhang, H. “Studies of steel structure material mechanical performance under the fire condition.” Journal of the Chinese People's Armed Police Force Academy, Vol. 20, No. 3, pp. :33-35, 2004.
    111. Zhao, J. C. “Application of the Direct Iteration Method for Non-linear Analysis of Steel Frames in Fire.” Fire Safety Journal, Vol. 35, pp. 241-255, 2000.
    112. Zhao, J. C., and Shen, Z. Y. “Experimental Studies of the Behavior of Unprotected Steel Frames in Fire.” Journal of Constructional Steel Research, Vol. 50, pp. 137-150, 1999.
    113. Zhou, Z. H. , and Chan, S. L. “Self-Equilibrating Element for Second-Order Analysis of Semirigid Jointed Frames.” Journal of Engineering Mechanics-ASCE, Vol. 121, No. 8, pp. 896-902, 1995.
    114. Zielinski, A. P., and Frey, F. “On linearization in non-linear structural finite element analysis,” Computers and Structures, Vol. 79, pp. 825-838, 2001.
    115. 丁育群、陳火炎、簡賢文,「建築技術規則性能防火法規轉換之研究」,內政部建築研究所專題研究計畫成果報告,1998
    116. 于宗漢,「耐火鋼H型柱之火害行為」,碩士論文,國立高雄第一科技大學,高雄,2005。
    117. 方朝俊,「火害對耐火鋼構件銲接及栓接行為之影響」,碩士論文,國立台灣科技大學營建工程系,台北,2000。
    118. 王仁佐,「向量式結構運動分析」,博士論文,國立中央大學土木工程研究所,中壢,2005。
    119. 何明錦、陳生金、邱耀正,「鋼結構梁柱接頭高溫載重行為研究」,內政部建築研究所,2005。
    120. 李台光、陶其駿,「鋼構造建築現況調查與發展課題之研究」,內政部建築研究所,1999。
    121. 李盈萱,「鋼骨構架受火害之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2007。
    122. 李鴻欣,「H型鋼柱高溫局部挫屈行為研究」,碩士論文,國立高雄第一科技大學,高雄,2004。
    123. 林村棋,「耐火鋼箱型鋼柱受火害之局部挫屈」,碩士論文,國立台灣科技大學營建工程系,台北,2003。
    124. 林祖榕,「在溫度效應下桁架行為之探討」,博士論文,國立台灣大學土木工程研究所,台北,2008。
    125. 邱耀正、張學誠「鋼構架抗火時效之極限分析」,中國土木水利工程學刊,第三卷,第四期,第339-345頁,1991。
    126. 邱耀正、許茂雄,「建築物結構耐火性能式設計法之研究」,內政部建築研究所研究報告,2001。
    127. 孫金香、高偉 譯,建築物綜合防火設計,天津科技翻譯出版公司,天津,1994
    128. 張燕如,「鋼結構火害反應之向量式有限元素法分析」,碩士論文,國立成功大學土木工程研究所,台南,2007。
    129. 莊有清,「鋼材在高溫環境下之行為探討」,碩士論文,國立成功大學土木工程研究所,台南,2003。
    130. 許獻鍾,「高溫中鋼結構行為之研究」,碩士論文,朝陽科技大學營建工程系,台中,2003。
    131. 陳生金,鋼結構設計,科技圖書,台灣,2001
    132. 陳昭旭,「鋼骨構架在火害下之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2006。
    133. 陳濟民,「火災對鋼結構承載力影響之研究」,碩士論文,國立成功大學土木工程研究所,台南,1989。
    134. 曾冠華,「耐火鋼箱型鋼柱受火害之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
    135. 劉君厚,「向量式有限元於平面構架之火害模擬」,碩士論文,中原大學土木工程研究所,中壢,2008。
    136. 鄭文雅,「平面鋼構架火害分析」,碩士論文,國立台灣大學土木工程研究所,台北,2001。
    137. 蕭江碧、邱耀正,「鋼結構樑柱接頭火害行為先期研究」,內政部建築研究所,2004。
    138. 蕭邦安,「非彈性結構大變形之數值模擬」,博士論文,國立成功大學土木工程研究所,台南,2003。
    139. 鋼結構設計規範(GBJ 17-88),北京,1988
    140. 鍾雲吉,「考慮溫度效應之鋼構架非彈性分析」,碩士論文,國立成功大學土木工程研究所,台南,1988。
    141. 簡丞宏,「H型鋼柱高溫整體結構行為研究」,碩士論文,國立高雄第一科技大學,高雄,2004。

    下載圖示 校內:2011-07-01公開
    校外:2011-07-01公開
    QR CODE