| 研究生: |
劉芳全 Liou, Fang-Chuan |
|---|---|
| 論文名稱: |
毫米波 60 GHz PA 與 94 GHz LNA 設計 及低溫被動元件特性之探討 Study on mm-Wave 60 GHz PA / 94 GHz LNA Designs and Cryogenic Passive Component Characteristics |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 毫米波 、V-band 、W-band 、功率放大器 、低雜訊放大器 、變壓器 、量子電腦 、低溫應用 |
| 外文關鍵詞: | millimeter-wave, V-band, W-band, power amplifier, low-noise amplifier, transformer, quantum computer, cryogenic applications |
| 相關次數: | 點閱:272 下載:80 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文大致分為三個部分,分別為應用於毫米波 V-band 60 GHz CMOS 變壓器結合之功率放大器、W-band 94 GHz CMOS 三級低雜訊放大器以及應用於量子電腦低溫被動元件量測驗證進行研究與討論。晶片製作使用製程皆為台灣半導體研究中心 (TSRI) 提供的標準製程,60 GHz 功率放大器使用的是 TSMC TN90GUTM CMOS 製程,而 94-GHz 低雜訊放大器與低溫被動元件量測驗證使用的是 TSMC TN40G CMOS製程,量測方面皆以 on-wafer 進行量測。
V-band 60 GHz 功率放大器使用了電容性交互耦合中和技術,以抵銷電晶體寄生電容,提升增益與穩定度,在輸入、輸出與級間皆使用變壓器方式進行匹配及差動放大器的結合,以達到完整的訊號傳輸。W-band 94 GHz 低雜訊放大器使用了疊接架構,並且串接三級以達到足夠的增益,佈局的實作上直流電源與偏壓走線,以鋪整片金屬層的方法代替傳統的傳輸線,以降低高頻寄生對電路效能的影響。金屬層的寬度與訊號走線的彎折皆經過適當的選擇,並進行完整電磁模擬驗證。最後一部分為應用於量子電腦低溫被動元件量測驗證,將被動元件 test-key 放入低溫環境量測,量測的溫度包含 300 K、77 K 與 4 K,最後使用 de-embedding 方式,萃取出所設計元件的實際參數,並且驗證其與常溫、低溫與模擬之間的差異性。
This thesis is basically divided into three parts, focusing on the study and discussion in the following areas: a 60 GHz V-band CMOS transformer-based power combining power amplifier (PA) and a 94 GHz W-band CMOS 3-stage low-noise amplifier (LNA) for millimeter-wave (MMW) applications, and passive components for quantum computer applications at cryogenic temperatures. The chip process utilized standard processes provided by the Taiwan Semiconductor Research Institute (TSRI). The 60 GHz PA was designed using the TSMC TN90GUTM CMOS process, while the 94 GHz LNA and cryogenic passive components were designed using the TSMC TN40G CMOS process. All measurements were conducted on-wafer.
For V-band applications, the 60 GHz PA employed capacitive coupling neutralization technique to compensate transistor parasitic capacitance CGD, thereby enhancing gain and stability. Transformer were employed for input, output, and inter-stage matching networks, as well as for differential amplifier coupling to achieve complete signal transmission. For W-band applications, the 94 GHz LNA adopted a cascode architecture with three stages to achieve sufficient gain. In terms of layout implementation, DC power lines and bias lines were designed with a layout method by replacing traditional metal lines with large areas of metal layers, aiming to reduce the impact of high-frequency parasitics on circuit performance. The width of metal layers and the bending of signal traces were carefully chosen, with comprehensive EM simulations to verify the design.
The final part focused on the verification measurements of cryogenic passive components for quantum computer applications. The passive component test-keys were placed in cryogenic environment for measurements at 300 K, 77 K, and 4 K. Finally, a de-embedding technique was used to extract the actual parameters of the designed components, validating the performance differences between the measurement results and simulation data at room temperature and cryogenic temperature.
[1] J. A. Howarth et al., “60 GHz Eadios: Enabling Next-Gneration Wreless Aplications,” in TENCON 2005 Region 10 Conference, Melbourne, VIC, Australia, Nov. 2005, pp. 1-6.
[2] RF atmospheric absorption / ducting [Online]. Available: http://www.tscm.com/rf_ absor.pdf
[3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4] S. Davis, B. Van Veen, S. Hagness, and F. Kelcz, “Breast Tumor Characterization Based on Ultrawideband Microwave Backscatter,” IEEE Transactions of Biomedical Engineering, vol. 55, no.1, pp. 237–246, Jan. 2008.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz Hybrid Switching Pulsed-Transmitter for Medical Imaging,” IEEE Journal of Solid-State Circuits, vol. 45, no.12, pp. 2667–2681, Dec. 2010.
[6] K. Chang, RF and Microwave Wireless Systems, John Wiley, 2000.
[7] D. A. Fusiek, The future is non-binary, European Investment Bank, 26 Oct. 2022. Available:https:/www.eib.org/en/stories/quantum-computers-climate-scientific
[8] Y. Chang, Y. Wang, C. Chen, Y. Wu and H. Wang, "A V-Band Power Amplifier with 23.7-dBm Output Power, 22.1% PAE, and 29.7-dB Gain in 65-nm CMOS Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4418-4426, Nov. 2019.
[9] C. Y. Law and A. Pham, "A High-Gain 60GHz Power Amplifier with 20dBm Output Power in 90nm CMOS," in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, Feb. 2010, pp. 426-427.
[10] T. Xi, S. Huang, S. Guo, P. Gui, D. Huang and S. Chakraborty, "High-Efficiency E-Band Power Amplifiers and Transmitter Using Gate Capacitance Linearization in a 65-nm CMOS Process," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 3, pp. 234-238, March 2017.
[11] C. Wu, Y. Lin, Y. Hsiao, C. Chou, Y. Wu and H. Wang, "Design of a 60-GHz High -Output Power Stacked- FET Power Amplifier Using Transformer-Based Voltage-Type Power Combining in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 10, pp. 4595-4607, Oct. 2018.
[12] T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, "60 and 77GHz Power Amplifiers in Standard 90nm CMOS," in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, Feb. 2008, pp. 562-636.
[13] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Artech House, 2006.
[14] C. -H. Liao, C. -H. Hsieh, R. Hu, D. -C. Niu and Y. -S. Shiao, "W-band 90nm CMOS LNA design," in Asia Pacific Microwave Conference (APMC), Kaohsiung, Taiwan, Dec. 2012, pp. 430-432.
[15] H. Homulle, L. Song, E. Charbon, and F. Sebastiano, “The Cryogenic Temperature Behavior of Bipolar, MOS, and DTMOS Transistors in Standard CMOS,” IEEE Journal of the Electron Device Society, vol. 6, pp. 263-270, Apr. 2018.
[16] R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 996–1006, Apr. 2018.
[17] A. Siligaris et al., “High-Frequency and Noise Performances of 65-nm MOSFET at Liquid Nitrogen Temperature,” IEEE Transactions on Electron Devices, vol. 53, no. 8, pp. 1902–1908, Aug. 2006.
[18] N. C. Dao, A. E. Kass, C. T. Jin, and P. H. W. Leong, “Impact of Series Resistance on Bulk CMOS Current Matching Over the 5–300K Temperature Range,” IEEE Electron Device Letters, vol. 38, no. 7, pp. 847–850, Jul. 2017.
[19] H. Homulle, S. Visser, B. Patra, and E. Charbon, “Design Techniques for a Stable Operation of Cryogenic Field-Programmable Gate Arrays,” Review of Scientific Instrument, vol. 89, 014703, pp. 1-6 , Jan. 2018.
[20] F. Teyssandier and D. Prêle, “Commercially Available Capacitors at Cryogenic Temperatures,” in 9th Int. Workshop Low Temperature Electro. (WOLTE), Guaruja, Brazil, Jun. 2010, pp. 1–4.
[21] B. Patra, M. Mehrpoo, A. Ruffino, F. Sebastiano, E. Charbon and M. Babaie, "Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures," IEEE Journal of the Electron Devices Society, vol. 8, pp. 448-456, Apr. 2020.
[22] M. Gong et al., “Design Considerations for Spin Readout Amplifiers in Monolithically Integrated Semiconductor Quantum Processors,” in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, Jun. 2019, pp. 111–114.
[23] D. S. Russell, “Technology Advances for Radio Astronomy,” Ph.D. dissertation, Eng. Appl. Sci., California Inst. Technol., Pasadena, CA, USA, 2013.
[24] T. Ytterdal, Y. Cheng, and T. A. Fjeldly, Device Modeling for Analog and RF CMOS Circuit Design, Ch. 4, pp.119-138, John Wiley & Sons Ltd., 2003.
[25] 邱煥凱,射頻功率放大器設計講義,經濟部工業局半導體學院計畫短期 國家晶片系統設計中心短期專業訓練課程,民國一百年。
[26] T. Suzuki, Y. Kawano, M. Sato, T. Hirose and K. Joshin, "60 and 77GHz Power Amplifiers in Standard 90nm CMOS," in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, Feb. 2008, pp. 562-636.
[27] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley & Sons, Inc., 2005.
[28] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, and John G. J. Chern, “A 90-nm CMOS Broadband and Biniature Q-Band Balanced Medium Power Amplifier,” in IEEE MTT-S International Microwave Symposium (IMS), Honolulu, HI, USA, Jun. 2007, pp. 1129–1132.
[29] Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band Medium Power Amplifier in 90 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 12, pp. 818–820, Dec. 2008.
[30] 呂知穎,毫米波 CMOS 低變化插入損耗相移器與非對稱型射頻收發開關之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
[31] 李子瑋,CMOS 毫米波功率放大器及 94-GHz CMOS 次諧波單混頻器射頻收發機之整合晶片設計研究,成功大學電腦與通信工程研究所碩士論文,民國一百零五年。
[32] Edwin H. Colpitts, “System for the Transmission of Intelligence,” US Patent no. 1137 384, April, 27, 1915.
[33] P. C. Hsu, C. Nguyen and M. Kintis, "Uniplanar Broad-Band Push-Pull FET amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 12, pp. 2150-2152, Dec. 1997.
[34] S. Toyoda, "Push-Pull Power Amplifiers in the X band," in IEEE MTT-S International Microwave Symposium (IMS), Denver, CO, USA, Jun. 1997, pp. 1433-1436.
[35] Z. Wang, "Wideband Class AB (Push-Pull) Current Amplifier in CMOS Technology," Electronics Letters, vol. 26, no. 8, pp. 543-545, Apr. 1990.
[36] R. Ramachandran, S. Moghe, J. Girimaji and A. Podell, "6 to 18 GHz Single-Ended and Push-Pull MMIC Amplifiers for High-Gain Modules," in IEEE 1988 Microwave and Millimeter-Wave Monolithic Circuits Symposium, New York, NY, USA, May 1988, pp. 15-18.
[37] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully Integrated CMOS Power Amplifier Design Using the Distributed Active-Transformer Architecture,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 371–383, Mar. 2002.
[38] K. H. An et al., "Power-Combining Transformer Techniques for Fully-Integrated CMOS Power Amplifiers," IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[39] Q. J. Gu, Z. Xu and M. C. F. Chang, "Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1365-1374, May 2012.
[40] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
[41] TEXAS INSTRUMENT, “Signal Chain Noise Figure Analysis,” Application Report, SLAA652, 2014.
[42] W. Liao and J. Yang, "A 0.5–3.5 GHz Wideband CMOS LNA for LTE Application," in International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, Jun. 2016, pp. 1-2.
[43] B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw Hill, 2001.
[44] D. M. Pozar, Microwave Engineering, John Wiley & Sons, Inc., 2004.
[45] Guillermo Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996.
[46] 朱嗣堯,整合GIPD天線之60-GHz四路結合功率放大器與V-及W-Band之毫米波功率放大器研製,成功大學電腦與通信工程研究所碩士論文,民國一百零六年。
[47] H. Asada, K. Matsushita, K. Bunsen, K. Okada and A. Matsuzawa, "A 60GHz CMOS Power Amplifier Using Capacitive Cross-Coupling Neutralization with 16 % PAE," in European Microwave Conference (EuMC), Manchester, UK, Oct. 2011, pp. 1115-1118.
[48] J. Rollett, "Stability and Power-Gain Invariants of Linear Twoports," IRE Transactions on Circuit Theory, vol. 9, no. 1, pp. 29-32, Mar. 1962.
[49] J. R. Long, "Monolithic Transformers for Silicon RF IC Design," IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[50] I. Aoki, S. D. Kee, D. B. Rutledge and A. Hajimiri, "Distributed Active Transformer-A New Power-Combining and Impedance-Transformation Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 316-331, Jan. 2002.
[51] C. Chou, Y. Hsiao, Y. Wu, Y. Lin, C. Wu and H. Wang, "Design of a V-Band 20- dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[52] S. -M. Weng, Y. -C. Lee, T. -H. Chen and J. Y. -C. Liu, "A 60-GHz Adaptively Biased Power Amplifier with Predistortion Linearizer in 90-nm CMOS," in IEEE MTT-S International Microwave Symposium (IMS), Philadelphia, PA, USA, Jun. 2018, pp. 651-654.
[53] S. Huang and P. Gui, "A 60GHz CMOS Power Amplifier with Parametric Matching Networks," in Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, Mar. 2019, pp. 1-5.
[54] H. T. Nguyen and H. Wang, "A Coupler-Based Differential mm-Wave Doherty Power Amplifier With Impedance Inverting and Scaling Baluns," IEEE Journal of Solid-State Circuits, vol. 55, no. 5, pp. 1212-1223, May 2020.
[55] H. Wan and D. Zhao, "A V-band Power Amplifier for Satellite Communications in 40-nm CMOS," in International Conference on Integrated Circuits, Technologies and Applications (ICTA), Xi'an, China, Oct. 2022, pp. 28-29.
[56] S. P. Voinigescu, T. O. Dickson, R. Beerkens, I. Khalid, P.Westergaard, “A Comparison of Si CMOS, SiGe BiCMOS, and InP HBT Technologies for High-Speed and Millimeter-Wave ICs,” in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Atlanta, GA, USA, Sep. 2004, pp. 111–114.
[57] K. Zhang, C. Shi, G. Chen, J. Chen and R. Zhang, "A 64.5-88 GHz Coupling-Concerned CMOS LNA with >10 dB Gain and 5 dB Minimum NF," in IEEE MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, Jun. 2020, pp. 337-340.
[58] Y. Zhang, Z. Wei, X. Tang, L. Zhang and F. Huang, "A 76.5–92.6 GHz CMOS LNA Using Two-Port kQ-Product Theory for Transformer Design," IEEE Microwave and Wireless Components Letters, vol. 32, no. 10, pp. 1187-1190, Oct. 2022.
[59] C. G. Jang, K. -J. Kim, K. -H. Ahn and S. -C. Chae, "A Design of 80 GHz Cascode LNA for W-Band Level Sensing System," in International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, Oct. 2023, pp. 1537-1539.
[60] P. -H. Huang, C. -S. Chiu, G. -W. Huang, K. -M. Chen and L. -K. Wu, "A Low-Power Low-Noise W-band LNA in 90-nm CMOS Process With Source Degeneration Technique," IEEE Microwave and Wireless Technology Letters, vol. 34, no. 1, pp. 69-71, Jan. 2024.
[61] F. Arute et al., “Quantum Supremacy Using a Programmable Superconducting Processor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct. 2019.
[62] L. Vandersypen et al., “Interfacing Spin Qubits in Quantum Dots and Donors–Hot, Dense, and Coherent,” NPJ Quantum Inf., vol. 3, no. 34, p. 1-10, Sep. 2017.
[63] B. Patra et al., “Cryo-CMOS Circuits and Systems for Quantum Computing Applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309–321, Jan. 2018.
[64] C. Bardin et al., “A High-Speed Cryogenic SiGe Channel Combiner IC for large Photon-Starved SNSPD Arrays,” in IEEE Bipolar/BiCMOS Circuits Technol. Meeting (BCTM), Bordeaux, France, Oct. 2013, pp. 215–218.
[65] U. Pfeiffer, “Integrated Circuit Design for Terahertz Applications”, in 6G Wirless Summit, (Invited Tutorials), Lapland, Finland, Mar. 2019, pp. 1-201.
[66] S. Montazeri, W. Wong, A. H. Coskun, and J. C. Bardin, “Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 178–187, Jan. 2016.
[67] G. Gualco et al., “Cryogenic Single-Chip Electron Spin Resonance Detector,” J. Magnetic Resonance, vol. 247, pp. 96–103, Oct. 2014.
[68] E. Lourandakis, On-Wafer Microwave Measurements and De-Embedding, ARTECH HOUSE, 2016.
[69] M.C.A.M. Koolen et al., “An Improved De-embedding Technique for On-Wafer High-Frequency Characterization,” in IEEE Bipolar Circuits and Technology Meeting (BCTM), Minneapolis, MN, USA, Oct. 1991, pp. 188-191.
[70] Kim, J. -Y., M. -K. Choi, and S. Lee, “A Thru-Short-Open De-Embedding Method for Accurate On-Wafer RF Measurements of Nano-Scale MOSFETs’,” Journal of Semiconductor Technology and Science, vol. 12, no. 1, pp. 53–58, Mar. 2012.
[71] Dang, J. et al., “A Semi-Distributed Method for Inductor De-Embedding,” in Int. Conference on Microelectronic Test Structures (ICMTS), Udine, Italy, Mar. 2014, pp. 141–145.
[72] M.-H. Cho et al., “A Cascade Open-Short-Thru (COST) De-Embedding Method for Microwave On-Wafer Characterization and Automatic Measurement,” IEICE Transactions on Electronics, vol. 88, no. 5, pp. 845–850, Jan. 2005.
[73] H. O. Güleç and M. B. Yelten, “A Cryogenic LC VCO Utilizing Cryogenic Models of Active Devices”, in International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, Apr. 2019, pp. 220-224.
[74] F. -C. Liou and T. -H. Huang, "Characterization of MOS Varactors in 40 nm CMOS Technology at 77 K and 4 K," in Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, Dec. 2023, pp. 25-27.
[75] Song, S. -S. , and Shin, H. , "An RF Model of the Accumulation-Mode MOS Varactor Valid in Both Accumulation and Depletion Regions," IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 1997-1999, Sep. 2003.
[76] H. Homulle, “Cryogenic Electronics for the Read-Out of Quantum Processors,” Ph.D. dissertation, Inst. Repository, Delft Univ. Technol., Delft, Netherlands, 2019.