簡易檢索 / 詳目顯示

研究生: 王方怜
Wang, Fang-Ling
論文名稱: 超燃引擎的進氣道初步設計數值模擬
Numerical Analysis of Scramjet Inlet Designs
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 超燃衝壓引擎進氣道超音速流極超音速流計算流體力學
外文關鍵詞: Scamjet, Inlet flow, Supersonic flow, Hypersonic flow, CFD
相關次數: 點閱:139下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音速燃燒衝壓噴射推進作用於極音速(hypersonic)環境下,氣體從進氣口(inlet)至擴張系統(expansion system)僅需數千分之幾秒,短暫的時間下須經歷震波結構形成、邊界層分離、燃燒反應…等極複雜的物理行為,研究上除需要極高解析度的實驗儀器亦需精密之架設、安排,然而,量測上諸多的瓶頸及限制使得單以實驗為研究工具仍不足深入探討、分析其現象,因而需要藉助模擬分析技術,解析出超音速燃燒衝壓噴射作用過程所有暫態的物理現象。計算流體力學(CFD)技術的發展至今已數十年,在工業研發與學術研究上扮演不可或缺的角色,對於輔助實驗參數校正、了解反應過程涵蓋之物理現象更有諸多貢獻。「進氣道設計數值模擬」之目的為利用計算模擬方式協助探討極音速下進氣道內的流場及相關之物理行為,輔助將來進氣道流道設計與分析。本研究先利用有限體積法所發展的計算技術建立數值模型,再以其數值方法對進氣道幾何做測試,並且初步完成進氣道幾何的設計。
    此研究使用CFD模擬超然衝壓引擎進氣道之流場,幫助設計進氣道的幾何形狀。並且探討了進氣道在理想氣體與真實氣體下的各物理量變化,結果顯示內流場之表面壓縮比以及絕熱板設計的角度對進氣道有很大的影響。

    Scramjet is a hypersonic air-breathing engine. It only takes 1/1000 sec to let the air go through from inlet to the expansion system, and it has complex physics like formation of shock wave, boundary layer separation and burning reaction in short time.
    There are too many bottlenecks and constraints of the current measurement techniques, which make the hypersonic investigation could not go deeply and analyze sufficiently only rely on experiments. Therefore, we need numerical simulation techniques to analyze physical phenomena in the Supersonic Combustion Ramjet injection process.
    The computational fluid dynamics (CFD) has been developed for many years. It plays an important role in academic and industrial research. In hypersonic inlet flow fields, the CFD can be used to examine the nature and structure of the flow interactions inside an inlet subject to a high Mach number inflow, and to provide a comprehensive surface property and flow field database of the effects of contraction ratio, and cowl position on the performance of a hypersonic scramjet inlet configuration.
    In this study, we use the CFD to simulate the flow fields within an inlet of a scramjet engine. The CFD can be used to aid the design of the inlet geometry. We also investigate the effect of ideal gas and real gas on the simulation result. The results show that the configuration of the internal compression surface of the inlet and the divergent angle of the isolator have important effects on the characteristics of the inlet.

    摘要.....................................................i Abstract................................................ii 致謝....................................................iii 目錄....................................................iv 圖目錄..................................................vi 符號表..................................................viii 第一章 研究動機與文獻回顧 1 1.1 研究動機 1 1.2 文獻回顧/研究背景 1 1.3 研究內容 8 第二章 模擬之數學模式及數值方法 9 2.1 序論 9 2.2 數學模式 9 2.3 預測及確修正解演算法(UNIC) 10 2.3.1 空間離散 10 2.3.2 時間積分 12 2.3.3 壓力、速度、密度結合 12 2.3.4 高階相結構 13 2.3.5 壓力阻尼 15 2.3.6 邊界條件 16 2.4 時空守恆法(CESE method) 17 2.4.1 一維CESE 19 2.4.2 一維CESE震波管驗證 20 2.4.3 二維CESE 21 2.4.4 二維震波反射驗證 24 2.5 理想氣體 24 2.6 真實氣體 25 第三章 進氣道計算模擬結果與討論 28 3.1 進氣道幾何設計與網格建立 28 3.2 UNIC初步模擬結果 29 3.3 CESE初步模擬結果 30 3.4 不同形狀之進氣道幾何 30 3.5 進氣道在理想氣體與真實氣體比較與討論 30 第四章 總結與未來工作 32 參考文獻 33 自述 63

    【1】 Cookson R A. Flanagan, P. ,and Penny G S.,” Reduced heat production due to mixing and kinetic factors in supersonic combustion of unmixed gases in an expanding channel” 12th Symp(Int)On Combustion 1969.
    【2】 Stalker, R. J., and Morgan, R. G., “Supersonic combustion with. a short thrust nozzle,” Combustion and Flame 57 1984 P55-P57.
    【3】 Billig, F. S. Orth, R. C. chetz, J. A., ”The interaction and penetration of gaseous jets in supersonic flow” NASA Tech Report CR-1386 1969.
    【4】 Rogers R.C., Capriotti, D.P., Guy. R.W. “Experimental supersonic combustion research at NASA Langley” 20th AIAA Advanced Measurementand Ground Testing Technology Conference AIAA-98-2506 1998.
    【5】 Palma Philip C. , Danehy Paul M. , and Houwing A. F. P.,” Fluorescence Imaging of rotational and vibrational temperature in shock-tunnel nozzle flow” AIAA Journal Vol. 41, No.9, 2003 P1722-1732.
    【6】Curran Edward T.,”Scramjet engines:The first forty years”J. Propulsion and Power ,Vol. 17, No.6, 2001 P1138-1148.
    【7】 Casey, R., Stalker, R. J., Brescianini, C. P., Morgan, R. G.; Jacobs, P. A.,Wendt, M., Ward, N. R., Akman, N.,Allen, G. A., Skinner, K. “Shock tunnel studies of scramjet phenomena, supplement 5” NASA Contrator Report 182096 1990.
    【8】Curran E.T.and Murthy N.B. “Scramjet Proplution”AIAA Vol.158,2000.
    【 9】Alexander S. Roudakov and Vyacheslav L. Semenov “ Recent flight test results of the Joint Ciamnasa Mach 6.5 scramjet flight program” NASA/TP-1998-206548 1998.
    【10】 http://www.swl.rwth-aachen.de/en/research/test-facilities/
    【11】 http://rocket.sfo.jaxa.jp/kspc/english/tf/index.html
    【12】 http://military.people.com.cn/GB/42963/69454/4933046.html
    【13】 McIntyre T. J., Housing A. F. P.,Palma P. C., Rabbath P. A. B., and Fox J. S.,” Optical and pressure measurements in shock tunnel testing of a model Scramjet Combustor” J. Propulsion and Power ,Vol. 13, No.3,1997 P388-P394.
    【14】 Skinner K. A. and Stalker R. J. “Species measurements in a hypersonic, Hydrogen-Air, combustion wake.” Combustion and Flame 106 1996 P478-486.
    【15】 Cookson, R A. Flanagan, P., and Penny, G,S., ”Reduced heat production due to mixing and kinetic factors in supersonic combustion of unmixed gases in an expanding channel” 12th Symp(Int)On Combustion 1969.
    【16】 陸志忠 博士論文”高壓甲烷火焰之OH-PLIF定量分析”成功大學航太與工程研究所 2002.
    【17】 Morris, N., Morgan, R.G., Paull, A. & Stalker, R.J.,“Silane as an Ignition Aid in scramjets,” Paper AIAA-87-1636. 22nd Thermophysics Conference, 8-10th June, 1987, Honolulu. AIAA PAPER 87-1636 1987.
    【18】 McClinton C. R. , Andrews, E. H. and Hunt, J. L.; “Engine Development for Space Access: Past, Present, and Future,” International Symposium on Air Breathing Engines, ISABE Paper 2001-1074, 2001
    【19】 Fry R. S., “ A century of Ramjet Propulsion Technology Evolution, ” J. Propulsion and Power, Vol. 20, No 1, pp. 27-58 , 2004.
    【20】 Macheret S. O., et. al., "Scramjet Inlet Control by Off-Body Energy Addition: A Virtual Cowl," AIAA Paper 2003-0032, pp. 1-18, 2003.
    【21】Gokhale S.S. and Kumar V.R. ,"Numerical Computations of Supersonic Inlet Flow," Int J. Numer Meth Fl., Vol.36, pp.597-617, 1991.
    【22】 Haeberle, J. and Guelhan, A., “Experimental investigation of a two-dimensional and a three-dimensional scramjet inlet at Mach 7,” J. Propulsion and Power, Vol. 24, Issue 5, pp. 1023-1034, 2008.
    【23】 Billig F. S., “Research on Supersonic Combustion,” J. Propulsion and Power, Vol. 9, No 4, pp. 499-514, 1993.
    【24】 Wang, T.S., Chen, Y.S., “ Unified Navier - Stokes Flowfield and Performance Analysis of Liquid Rocket Engines,” J. Propulsion and Power, Vol. 9, No. 5, pp. 678-685, 1993.
    【25】 Chen, Y.S.Liu , J.Zhang, S.and Mallapragada, P., “An Integrated Tool for Launch Vehicle Base-Heating Analysis,” Final Report, NAS8-00002, Engineering Sciences, Inc., Huntsville, AL,2001.
    【26】 Liaw,P., Shang, H.M.Chen, Y.S., “ Particulate Multi - Phase Flowfield Calculation with Combustion/Breakup Models for Solid Rocket Motor,” AIAA-94-2780, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, June 27-29, 1994, Indianapolis, IN.
    【27】 Chen. Y.S., Zhang S., and Liu, J., “Stage Separation Performance Analysis Project,” Final Report, H-34345D, Engineering Sciences, Inc., Huntsville, AL, 2002.
    【28】 Wang, T.-S., Chen, Y.-S., Liu, J., Myrabo, L.N., and Mead, F.B. Jr., “Advanced Performance Modeling of Experimental Laser Lightcraft,” Journal of Propulsion and Power, Vol. 18, No. 6,2002, pp. 1129-1138.
    【29】 Wang, T.-S., “Multidimensional Unstructured-Grid Liquid Rocket Engine Nozzle Performance and Heat Transfer Analysis,” Journal of Propulsion and Power, Vol. 22, No. 1, 2005,pp. 78-84.
    【30】 Wang, T.-S., “Transient 3-D Analysis of Nozzle Side Load in Regeneratively Cooled Engines,” AIAA Paper 2005-3942, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, Arizona, 2005.
    【31】 Wang, T.S. and Chen, Y.S., “Unified Navier-Stokes Flowfield and Performance Analysis of Liquid Rocket Engines,” J. Propulsion and Power, Vol. 9, No. 5, pp. 678-685, 1993.
    【32】 Chen , Y.S., Liu, J., Zhang, S. and Mallapragada , P. , “An Integrated Tool for Launch Vehicle Base-Heating Analysis,” Final Report, NAS8-00002, Engineering Sciences, Inc., Huntsville, AL, 2001
    【33】 Liaw, P., Shang, H.M. and Chen, Y.S., “Pariculate Multi-Phase Flowfield Calculation with Combustion/Breakup Models for Solid Rocket Motor” AIAA-94-2780, 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, June 27-29, 1994, Indianapolis, IN.
    【34】 Chen, Y.S., Zhang, S. and Liu, J., “Stage Separation Performance Analysis Project,” Final Report, H-34345D, Engineering Sciences, Inc., Huntsville, AL, 2002.
    【35】 Chen, Y.S. and Kim, S.W., “ Computation of Turbulent Flows Using an Extended k- Turbulence Closure Model,” NASA CR-179204, 1987
    【36】 Wang, T.S. “ Transient 3 - D Analysis of Nozzle Side Load in Regeneratively Cooled Engines,” AIAA Paper 2005-3942, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, Arizona, 2005.
    【37】 Barth ,T.J. ,“ Recent Development in High Order K-Exact Reconstruction on Unstructured Meshes, ” AIAA Paper 93-0668, 1993.
    【38】 Karki, K.C. and Patankar ,S.V., “ Pressure Based Calculation
    Procedure for Viscous Flows at all Speeds in Arbitrary Configurations,” AIAA J., Vol. 27, pp.1167-1174,1989.
    【39】 Chen, Y.S., “An Unstructured Finite Volume Method for Viscous
    Flow Computations” , 7th International Conference on Finite Element Methods in Flow Problems, Feb. 3-7,1989, University of Alabama in Huntsville, Huntsville, Alabama.
    【40】 Shang, H.M., Chen, Y.S., Liaw, P., Shih, M.S. and Wang, T.S., “Numerical Modeling of Spray Combustion with an Unstructured Grid Method”, AIAA Paper 95-2781, 1995.
    【41】 Shang, H.M., Chen, Y.S., Liaw, P. and Chen, C.P., “A Hybrid
    Unstructured Grid Method for Fluid Flow Computation”, Numerical Developments in CFD Symposium of the Joint ASME/JSME Fluids Engineering Conference, August 13-18, 1995, Hilton Head Island, SC.
    【42】 Shang , H.M. , Shih , M.H. , Chen , Y.S., and Liaw , P., “Flow Calculation on Unstructured Grids with a Pressure-Based Method”, Proceedings of 6th International Symposium on Computational Fluid Dynamics, Sep. 4-8, 1995, Lake Tahoe, NV.
    【43】 Shang, H.M. and Chen, Y.S., “Unstructured Adaptive Grid Method for Reacting Flow Computation”, AIAA Paper 97-3183, July 1997.
    【44】 Zhang, S.J., Liu, J., Chen, Y.-S. and Wang, T.-S., “Adaptation for Hybrid Unstructured Grid with Hanging Node Method ,” AIAA Paper 2001-2657, 2001.
    【45】 Barth, T.J., and Jespersen, D.C., “The Design and Application of Upwind Schemes on Unstructured Meshes,” AIAA Paper 89-0366, 1989.
    【46】 Frink , N.T., “ Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral Meshes,” AIAA J., Vol. 30(1), pp. 70-77, 1992.
    【47】 Frink, N.T., “ Recent Progress toward a Three-Dimensional Unstructured Navier-Stokes Flow Solver,” AIAA Paper 94-0061, 1994.
    【48】Holmes, D.G. and Connell, S.D., “Solution of the 2D Navier-Stokes Equations on Unstructured Adaptive Grids,” 9th AIAA Computational Fluid Dynamics Conference, June, 1989.
    【49】 Rhie, C.M. and Chow, W.L., “A Numerical Study of the Turbulent Flow past an Isolated Airfoil with Trailing Edge Separation,” AIAA J., Vol. 21, pp. 1525-1532, 1983.
    【50】 Yu, S. T. and Chang. S. C., “ Applications of the Space-Time Conservation Element / Solution Element Method to Unsteady Chemically Reactive Flows,” AIAA Paper 97-2099, the 13th AIAA CFD Conference, Snowmass, Colorado, 1997.
    【51】 Wang, X. Y., Chang, S. C. and Jorgenson, P.C.E., “Accuracy Study of the Space-Time CESE Method for Computational Aeroacoustics Problems Involving Shock Waves,” AIAA Paper 2000-0474, presented at the 38th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2000.
    【52】 Loh, C. Y., Hultgren, L. S., Chang, S. C. and Jogenson, P.C.E., “Vortex Dynamics Simulation in Aeroacoustics by the Space-Time Conservation Element and Solution Element Method,” AIAA Paper 99-0359, the 37th AIAA Aerospace Sciences Meeting, Reno, Nevada, 1999.
    【53】 Tseng, T.-I. and Yang, R.-J., “Simulation of the Mach Reflection in Supersonic Flows by the CE/SE Method,” Shock Waves, Vol. 14, No. 4, pp.307-311, 2005
    【54】 Tseng,T.-I andYang, R.-J., “Numerical Simulation of Vorticity Production in Shock Diffraction,” AIAA Journal, Vol. 44 No. 5 pp.1040-1047, 2006
    【55】 Wang, X. T., Chang, C. L. and Liu, Y., “The Space-Time CE/SE Method for Solving Maxwell’s Equations in Time-Domain,” the 2002 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, San Antonio, Texas, 2002.
    【56】 Chang, S. C., “The Method of Space-Time Conservation Element and Solution Element – A New Approach for Solving the Navier-Stokes and Euler Equations,” J. Comput. Phys., Vol. 119, pp. 295-324, 1995.
    【57】 Chang, S. C., X. Y. Wang and C. Y. Chow, ” The Method of Space-Time Conservation Element and Solution Element -Applications to One-Dimensional and Two-Dimensional Time-Marching Flow Problems” AIAA-95-1754-CP-1995
    【58】 Chang , S. C. and Wang , X. Y.,“Multi-dimensional Courant number Insensitvie CE/SE Euler Solvers for Applications Involving highly nonuniform meshes” the 39th AIAA/ASME/SAE/ASE Joint Propulsion Conference & Exhibit, Huntsville, Alabama, 2003.
    【59】 Venkatachari, B. S., Cheng, G. C., Soni, B. K. and Chang, S. C., “Validation and Courant number insensitive CE/SE method for transient viscous flow simulations” J. Comput. Phys., Vol. 78, pp. 653-670, 2008.
    【60】 Andreadis, D., “Scramjet Engines Enabling the Seamless Integration of Air & Space Operations,” The Industrial Physicist, Aug./Sept. 2004.

    下載圖示 校內:2013-07-26公開
    校外:2013-07-26公開
    QR CODE