| 研究生: |
陳彥勳 Chen, Yan-Xun |
|---|---|
| 論文名稱: |
無鉛無機鈣鈦礦電阻式記憶體於光電應用之研究 Investigation of Lead-Free All-Inorganic Perovskite RRAM Devices for Optoelectronic Application |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 電阻式記憶體 、無鉛鹵素鈣鈦礦材料 、電阻轉換機制 、量子點 、光感測器 |
| 外文關鍵詞: | ReRAM, Lead-Free halide perovskite, Resistive switching, Quantum dots, Photo detectors |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討利用無鉛全無機鈣鈦礦材料Cs3Bi2Br9製作的新型光感應阻變隨機存取記憶體(RRAM)元件,專門針對各類物聯網(IoT)應用進行優化,例如汽車系統與智慧感測器。研究結果顯示,基於Cs3Bi2Br9的 RRAM 元件在穩定性、光敏感度以及記憶保持能力方面均表現卓越。我們透過引入量子點技術,顯著提升了元件的多級存儲能力、耐久性和數據保持性能。本研究開闢了針對 IoT 的先進記憶體解決方案的新方向,展示了此類元件在未來智能系統和汽車技術中的應用潛力。後續研究將集中在材料性能優化、元件結構改進及其可擴展性,以滿足現實世界中 IoT 應用的需求。
In this study, we investigate the development of a novel photo-sensing resistive random access memory (RRAM) device using lead-free all-inorganic perovskite material Cs3Bi2Br9. Our research focuses on creating environmentally friendly and high-performance memory devices suitable for various Internet of Things (IoT) applications, including automotive systems and smart sensors. The Cs3Bi2Br9-based RRAM devices demonstrate excellent stability, high sensitivity to light, and reliable memory retention. Key findings include significant improvements in electrical performance, such as enhanced multi-level storage capability, endurance, and data retention, achieved through the incorporation of quantum dots. This study opens new avenues for the development of advanced memory solutions tailored for IoT, emphasizing the potential for integrating these devices into future smart systems and automotive technologies. Future work will concentrate on optimizing material properties, device architecture, and scalability to meet the demands of real-world IoT applications.
[1] A. Chen, "Emerging research device roadmap and perspectives," in 2014 IEEE International Conference on IC Design & Technology, 28-30 May 2014 2014, pp. 1-4, doi: 10.1109/ICICDT.2014.6838616.
[2] S. Yu, Resistive Random Access Memory (RRAM). Morgan & Claypool Publishers, 2016.
[3] A. Islam, N. S. Ranjan, and A. K. Dwivedi, "Compact design of an MTJ-based non-volatile CAM cell with read/write operations," Microsystem Technologies, vol. 26, no. 10, pp. 3259-3270, 2020/10/01 2020, doi: 10.1007/s00542-018-4008-x.
[4] T. Kawahara, K. Ito, R. Takemura, and H. Ohno, "Spin-transfer torque RAM technology: Review and prospect," Microelectronics Reliability, vol. 52, no. 4, pp.613-627,2012/04/01/2012,doi:https://doi.org/10.1016/j.microrel.2011.09.028.
[5] W. J. Gallagher and S. S. P. Parkin, "Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip," IBM Journal of Research and Development, vol. 50, no. 1, pp. 5-23, 2006, doi: 10.1147/rd.501.0005.
[6] M. Julliere, "Tunneling between ferromagnetic films," Physics Letters, vol. 54, pp. 225–226, 1975.
[7] V. K. Joshi, P. Barla, S. Bhat, and B. K. Kaushik, "From MTJ Device to Hybrid CMOS/MTJ Circuits: A Review," IEEE Access, vol. 8, pp. 194105-194146, 2020, doi: 10.1109/ACCESS.2020.3033023.
[8] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, no. 25-26, pp. 2632-2663, 2009/07/13 2009, doi: https://doi.org/10.1002/adma.200900375.
[9] T. Mikolajick, S. Slesazeck, M. H. Park, and U. Schroeder, "Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors," MRS Bulletin, vol. 43, no. 5, pp. 340-346, 2018, doi: 10.1557/mrs.2018.92.
[10] S. W. Fong, C. M. Neumann, and H. S. P. Wong, "Phase-Change Memory—Towards a Storage-Class Memory," IEEE Transactions on Electron Devices, vol. 64, no. 11, pp. 4374-4385, 2017, doi: 10.1109/TED.2017.2746342.
[11] B. Hajri, H. Aziza, M. M. Mansour, and A. Chehab, "RRAM Device Models: A Comparative Analysis With Experimental Validation," IEEE Access, vol. 7, pp. 168963-168980, 2019, doi: 10.1109/ACCESS.2019.2954753.
[12] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, no. 6, pp. 28-36, 2008/06/01/ 2008, doi: https://doi.org/10.1016/S1369-7021(08)70119-6.
[13] K. J. Lee, Y. C. Chang, C. J. Lee, L. W. Wang, and Y. H. Wang, "Bipolar Resistive Switching Characteristics in Flexible Pt/MZT/Al Memory and Ni/NbO2/Ni Selector Structure," IEEE Journal of the Electron Devices Society, vol. 6, pp. 518-524, 2018, doi: 10.1109/JEDS.2018.2801278.
[14] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, no. 1, p. 578168, 2014/01/01 2014, doi: https://doi.org/10.1155/2014/578168.
[15] E. W. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, no. 3, pp. 586-613doi: 10.3390/electronics4030586.
[16] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009/05/06 2009, doi: 10.1021/ja809598r.
[17] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells," Nano Letters, vol. 13, no. 4, pp. 1764-1769, 2013/04/10 2013, doi: 10.1021/nl400349b.
[18] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, no. 6107, pp. 643-647, 2012/11/02 2012, doi: 10.1126/science.1228604.
[19] N. K. Noel et al., "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications," Energy & Environmental Science, 10.1039/C4EE01076K vol. 7, no. 9, pp. 3061-3068, 2014, doi: 10.1039/C4EE01076K.
[20] K. Lin et al., "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, vol. 562, no. 7726, pp. 245-248, 2018/10/01 2018, doi: 10.1038/s41586-018-0575-3.
[21] L. Dou et al., "Solution-processed hybrid perovskite photodetectors with high detectivity," Nature Communications, vol. 5, no. 1, p. 5404, 2014/11/20 2014, doi: 10.1038/ncomms6404.
[22] S. Yakunin et al., "Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites," Nature Communications, vol. 6, no. 1, p. 8056, 2015/08/20 2015, doi: 10.1038/ncomms9056.
[23] H. Zhu et al., "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors," Nature Materials, vol. 14, no. 6, pp. 636-642, 2015/06/01 2015, doi: 10.1038/nmat4271.
[24] W. Nie et al., "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, vol. 347, no. 6221, pp. 522-525, 2015/01/30 2015, doi: 10.1126/science.aaa0472.
[25] Q. A. Akkerman, G. Rainò, M. V. Kovalenko, and L. Manna, "Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals," Nature Materials, vol. 17, no. 5, pp. 394-405, 2018/05/01 2018, doi: 10.1038/s41563-018-0018-4.
[26] "Best Research-Cell Efficiencies," ed. National Renewable Energy Laboratory, 2023.
[27] P. Su et al., "Pb-Based Perovskite Solar Cells and the Underlying Pollution behind Clean Energy: Dynamic Leaching of Toxic Substances from Discarded Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 11, no. 8, pp. 2812-2817, 2020/04/16 2020, doi: 10.1021/acs.jpclett.0c00503.
[28] , G. S. H. Thien et al., "Recent Advances in Halide Perovskite Resistive Switching Memory Devices: A Transformation from Lead-Based to Lead-Free Perovskites," ACS Omega, vol. 7, no. 44, pp. 39472-39481, 2022/11/08 2022 doi: 10.1021/acsomega.2c03206.
[29] Y. Fang, S. Zhai, L. Chu, and J. Zhong, "Advances in Halide Perovskite Memristor from Lead-Based to Lead-Free Materials," ACS Applied Materials & Interfaces, vol. 13, no. 15, pp. 17141-17157, 2021/04/21 2021, doi: 10.1021/acsami.1c03433.
[30] B. W. Zhang et al., "Lead-Free Perovskites and Metal Halides for Resistive Switching Memory and Artificial Synapse," Small Structures, vol. n/a, no. n/a, p. 2300524, 2024/04/03 2024, doi: https://doi.org/10.1002/sstr.202300524.
[31] M. H. Kumar et al., "Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation," Advanced Materials, vol. 26, no. 41, pp. 7122-7127, 2014/11/01 2014, doi: https://doi.org/10.1002/adma.201401991.
[32] J. Mei, M. Liu, P. Vivo, and V. Pecunia, "Two-Dimensional Antimony-Based Perovskite-Inspired Materials for High-Performance Self-Powered Photodetectors," Advanced Functional Materials, vol. 31, no. 50, p. 2106295, 2021/12/01 2021, doi: https://doi.org/10.1002/adfm.202106295.
[33] Y. Zhang et al., "Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection," Nature Communications, vol. 11, no. 1, p. 2304, 2020/05/08 2020, doi: 10.1038/s41467-020-16034-w.
[34] L. Protesescu et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Letters, vol. 15, no. 6, pp. 3692-3696, 2015/06/10 2015, doi: 10.1021/nl5048779.
[35] F. Zhang et al., "Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology," ACS Nano, vol. 9, no. 4, pp. 4533-4542, 2015/04/28 2015, doi: 10.1021/acsnano.5b01154.
[36] Q. Liu et al., "Controllable Growth of Nanoscale Conductive Filaments in Solid-Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom Electrode," ACS Nano, vol. 4, no. 10, pp. 6162-6168, 2010/10/26 2010, doi: 10.1021/nn1017582.
[37] J. Epp, "4 - X-ray diffraction (XRD) techniques for materials characterization," in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, G. Hübschen, I. Altpeter, R. Tschuncky, and H.-G. Herrmann Eds.: Woodhead Publishing, 2016, pp. 81-124.
[38] "NCKU, Core Facility Center." https://ctrmost-cfc.ncku.edu.tw (accessed Jun. 24, 2024).
[39] J. Long, A. Nand, and S. Ray, "Application of Spectroscopy in Additive Manufacturing," Materials, vol. 14, no. 1, doi: 10.3390/ma14010203.
[40] M. K. Kim, J. Cha, H. Jin, and M. Kim, "Facile synthesis of Cs3Bi2Br9 perovskite nanoplates with low-polarity antisolvents for photodetection applications," Materials Letters, vol. 333, p. 133577, 2023/02/15/ 2023, doi: https://doi.org/10.1016/j.matlet.2022.133577.
[41] F. Deng et al., "Growth and Optical Properties of Lead-Free Cs3Bi2Br9 Perovskite Microplatelets," physica status solidi (b), vol. 259, no. 6, p. 2100593, 2022/06/01 2022, doi: https://doi.org/10.1002/pssb.202100593.
[42] Y. Niu et al., "Improved Al2O3 RRAM performance based on SiO2/MoS2 quantum dots hybrid structure," Applied Physics Letters, vol. 120, no. 2, p. 022106, 2022, doi: 10.1063/5.0070400.
[43] N. K. Tailor, P. Maity, and S. Satapathi, "Observation of Negative Photoconductivity in Lead-Free Cs3Bi2Br9Perovskite Single Crystal," Acs Photonics, vol. 8, no. 8, pp. 2473-2480, 2021.
校內:2029-08-06公開