| 研究生: |
林晏安 Lin, Yan-An |
|---|---|
| 論文名稱: |
應用合作賽局理論獲得合理利益分配之無關鍵中心化供應鏈經營模式 A Decentralized Supply-Chain Management Model Using Cooperative Game Theory for a Reasonable Profit Allocation |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 208 |
| 中文關鍵詞: | 石油供應鏈 、合作賽局理論 、夏普利值 、奈許議價方程式 |
| 外文關鍵詞: | Petroleum supply chain, cooperative game theory, Sharpley value, Nash bargaining equation, Core |
| 相關次數: | 點閱:142 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的石化產業由於全球經濟的整合而面臨重大挑戰,供應鏈如何經營管理使利益最佳化成為重要議題。傳統的供應鏈經營方法僅考慮總體經濟效益最大化而未考慮參與者間利益分配問題。而現今的供應鏈經營強調如何在整體獲得最大利益的前提下,考慮成員間進行公平地利益分配。過去許多文獻中,將夏普利值或奈許議價方程式應用於無關鍵中心化的供應鏈經營(decentralized supply-chain management),而鮮少將兩者合併討論。而本研究發展一套流程,結合核(core)、夏普利值(Shapley value)與奈許議價方程式(Nash bargaining equation)三種方法。我們先以夏普利值獲得合理的利益分配,接著以核檢驗其結果是否具有聯盟穩定性,最後以奈許議價方程式之觀點進一步探討成員間相對的影響力關係。我們利用這套流程,以具體石油供應鏈為例,針對不同的供應鏈結構、合作前中間產品進出口價格差異與中間產品價格波動等因素分為多個案例與情境討論,最後皆得到合理的分配結果。
The ultimate objective of supply chain management is to allocate benefits fairly among participating members under the condition that the overall profit is maximized. In order to achieve this goal, three existing methods, i.e., the core, the Shapley value and the Nash bargaining formula, have been integrated in this work for running a petroleum supply network, and assessing the impacts of various (1) supply-chain structures, (2) import prices of intermediate products, and (3) their import and export price differ-ences. It was found that varying the above factors does create significant impacts on the Shapley values. On the other hand, the negotiation-power indictors of members and the size of core region are not affected by price changes if the import and export price difference is maintained at the same level. Finally, extensive case studies have been carried out to demonstrate the practicability of the above benefit allocation strategy.
1. Beamon, B.M., Supply chain design and analysis:: Models and methods. International journal of production economics, 1998. 55(3): p. 281-294.
2. Von Neumann, J. and O. Morgenstern, Theory of games and economic behavior (commemorative edition). 2007: Princeton university press.
3. Nash, J., Non-cooperative games. Annals of mathematics, 1951: p. 286-295.
4. Nash, J., Two-person cooperative games. Econometrica: Journal of the Econometric Society, 1953: p. 128-140.
5. Zhang, H., et al. A review of game theory applications in transportation analysis. in 2010 International Conference on Computer and Information Application. 2010. IEEE.
6. Roth, A.E., Axiomatic models of bargaining. Vol. 170. 2012: Springer Science & Business Media.
7. Draganska, M., D. Klapper, and S.B. Villas-Boas, A larger slice or a larger pie? An empirical investigation of bargaining power in the distribution channel. Marketing Science, 2010. 29(1): p. 57-74.
8. Muthoo, A., A bargaining model based on the commitment tactic. Journal of Economic theory, 1996. 69(1): p. 134-152.
9. Bonald, T., et al., A queueing analysis of max-min fairness, proportional fairness and balanced fairness. Queueing systems, 2006. 53(1-2): p. 65-84.
10. Bertsimas, D., V.F. Farias, and N. Trichakis, The Price of Fairness. Operations Research, 2011. 59(1): p. 17-31.
11. Liu, S. and L.G. Papageorgiou, Fair profit distribution in multi-echelon supply chains via transfer prices. Omega, 2018. 80: p. 77-94.
12. Torres, A.I. and G. Stephanopoulos, Design of multi-actor distributed processing systems: A game-theoretical approach. AIChE Journal, 2016. 62(9): p. 3369-3391.
13. Nagarajan, M. and G. Sošić, Game-theoretic analysis of cooperation among supply chain agents: Review and extensions. European journal of operational research, 2008. 187(3): p. 719-745.
14. Li, Q. and Z. Liu, Supply chain coordination via a two-part tariff contract with price and sales effort dependent demand. Decision Science Letters, 2015: p. 27-34.
15. Leng, M. and A. Zhu, Side-payment contracts in two-person nonzero-sum supply chain games: Review, discussion and applications. European Journal of Operational Research, 2009. 196(2): p. 600-618.
16. Raj, A., I. Biswas, and S.K. Srivastava, Designing supply contracts for the sustainable supply chain using game theory. Journal of Cleaner Production, 2018. 185: p. 275-284.
17. Cachon, G.P. and M.A. Lariviere, Supply Chain Coordination with Revenue-Sharing Contracts: Strengths and Limitations. Management Science, 2005. 51(1): p. 30-44.
18. Biswas, I., B. Avittathur, and A.K. Chatterjee, Impact of structure, market share and information asymmetry on supply contracts for a single supplier multiple buyer network. European Journal of Operational Research, 2016. 253(3): p. 593-601.
19. Cachon, G.P. and A.G. Kök, Competing Manufacturers in a Retail Supply Chain: On Contractual Form and Coordination. Management Science, 2010. 56(3): p. 571-589.
20. Yue, D. and F. You, Fair profit allocation in supply chain optimization with transfer price and revenue sharing: MINLP model and algorithm for cellulosic biofuel supply chains. AIChE Journal, 2014. 60(9): p. 3211-3229.
21. Leng, M. and M. Parlar, Game theoretic applications in supply chain management: a review. INFOR: Information Systems and Operational Research, 2005. 43(3): p. 187-220.
22. Leng, M. and M. Parlar, Analytic solution for the nucleolus of a three‐player cooperative game. Naval Research Logistics (NRL), 2010. 57(7): p. 667-672.
23. Kuo, T.-H. and C.-T. Chang, Optimal planning strategy for the supply chains of light aromatic compounds in petrochemical industries. Computers & Chemical Engineering, 2008. 32(6): p. 1147-1166.
24. Shapley, L.S., A value for n-person games. Contributions to the Theory of Games, 1953. 2(28): p. 307-317.