簡易檢索 / 詳目顯示

研究生: 阮文逸
Ruan, Wen-Yi
論文名稱: 94-及160-GHz毫米波CMOS / IPD射頻晶片天線及94-GHz整合IPD晶片天線之CMOS可升降頻混頻器
Research on 94- and 160-GHz Millimeter-Wave CMOS / IPD On-Chip Antenna and 94-GHz integrated On-Chip IPD Antenna with CMOS Up/Down Mixer
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 人造磁導體互補式金屬氧化物半導體整合式被動元件毫米波晶片天線
外文關鍵詞: artificial-magnetic-conductor(AMC), CMOS, integrated passive device (IPD), millimeter-wave, on-chip antenna
相關次數: 點閱:114下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計研製毫米波IPD與CMOS射頻晶片嵌入式天線,包含160-GHz CMOS人造磁導體偶極子天線與Balun 帶通濾波器之毫米波整合射頻晶片、94-GHz IPD 摺合式偶極子源振子之準八木天線、94-GHz IPD 帶通濾波1×2摺合式偶極子天線陣列以及94-GHz整合IPD摺合式偶極子1×2天線陣列之CMOS可升降頻次諧波電阻式混頻器。160-GHz CMOS人造磁導體偶極子天線與Balun 帶通濾波器之毫米波整合射頻晶片,結合毫米波接收機前端電路三種被動元件(天線、平衡器、帶通濾波器);94-GHz IPD 摺合式偶極子源振子之準八木天線將摺合式偶極子天線作為Yagi天線中源振子,並再摺合式偶極子天線前端加入引向器以構成準Yagi天線; 94-GHz IPD 帶通濾波1×2摺合式偶極子天線陣列,設計天線功率增益於頻率分布上具有帶通濾波響應;94-GHz整合IPD摺合式偶極子1×2天線陣列之CMOS可升降頻次諧波電阻式混頻器,利用flip-chip技術整合IPD與CMOS製程,以結合晶片天線與可升降混頻器。設計之晶片訊號饋入系統皆以共面波導方式設計,天線架構皆以平面方式實現,使用ANSYS 3D全波電磁模擬軟體HFSS進行模擬,晶片量測採用on-wafer方式進行。

    This thesis presents the research of millimeter-wave (MMW) CMOS and IPD on-chip antennas. The designed CMOS and IPD MMW on-chip antennas are fabricated with TSMC 90-nm CMOS standard process and AFSC integrated passive device (IPD) process, respectively. The three-dimensional (3D) EM simulator HFSS is used for design and simulation. The designed MMW on-chip antennas including: (1) 160-GHz CMOS on-chip artificial magnetic conductor (AMC) dipole antenna with integrated balun-bandpass filter; (2) 94-GHz IPD quasi-Yagi antenna with folded dipole driver; (3) 94-GHz IPD bandpass-filtering 1×2 folded dipole antenna array; (4) 94-GHz IPD 1×2 folded dipole antenna array integrated with CMOS up/down-conversion single-ended sub-harmonic resistive mixer. The measured performances of the designed on-chip antennas are all conducted by the on-wafer measurement setup.

    第一章 緒論 1 1.1 研究動機與背景[1][2] 1 1.2 論文架構 1 第二章 160-GHz CMOS人造磁導體偶極子天線與Balun 帶通濾波器之毫米波整合射頻晶片 3 2.1 人造磁導體原理與架構簡介 3 2.2 160-GHz CMOS AMC偶極子天線與Balun帶通濾波器整合晶片 6 2.2.1 架構簡介 7 2.2.2 設計流程與考量 8 2.2.3 模擬與量測結果 10 2.3 結果與討論 21 第三章 94-GHz IPD 摺合式偶極子源振子之準八木天線 23 3.1 整合式被動元件(IPD)製程簡介 23 3.2 摺合式偶極子天線理論介紹[9][16] 24 3.3 94-GHz IPD 摺合式偶極子源振子之準八木天線 26 3.3.1 架構簡介 26 3.3.2 設計流程與考量 28 3.3.3 模擬與量測結果 28 3.3 結果與討論 34 第四章 94-GHz IPD 帶通濾波1×2摺合式偶極子天線陣列 37 4.1 濾波天線設計與分析[1][23][24][25] 37 4.1.1 λ/4共振器 37 4.1.2 天線輻射體與帶通濾波天線 40 4.2 94-GHz IPD 帶通濾波1×2摺合式偶極子天線陣列 42 4.2.1 架構簡介 42 4.2.2 設計流程與考量 43 4.2.3 模擬與量測結果 44 4.3 結果與討論 50 第五章 94-GHz整合IPD摺合式偶極子1×2天線陣列之CMOS可升降頻次諧波電阻式混頻器 53 5.1 架構簡介 53 5.1.1 設計流程與考量 55 5.2 模擬與量測結果 55 5.3 結果與討論 61 第六章 結論 63 參考文獻 65 附錄A 偶極子天線(Dipole)與Yagi-Uda天線簡介[16][31] 69 A.1 偶極子天線簡介[9][32] 69 A.2 Yagi-Uda天線簡介[9][32] 72 附錄B Balun帶通濾波器簡介[28][34] 75 附錄C 射頻晶片嵌入式天線量測方法[16][31] 79 C.1 反射損耗與射頻晶片嵌入式天線量測功率增益方法 79 C.1.1 考慮量測探針機台之金屬平台效應(metallic-plate effect) 81 C.2 射頻晶片嵌入式天線輻射場型量測方法 84

    [1] 莊詠翔,60-及77-GHz毫米波GIPD射頻晶片天線/濾波天線及CMOS人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年七月。
    [2] 吳易,60-及77-GHz CMOS 人造磁導體嵌入式天線及相位陣列天線毫米波晶片,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零三年七月。
    [3] B. Heydari, M. Bohsali, E. Adabi, and A. M. Niknejad, “Low-power mm-wave components up to 104 GHz in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2007, pp. 200–201.
    [4] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
    [5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J. –C. Chien, and A. M. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec 2010.
    [6] J. N. Mait, D. A. Wikner, M. S. Mirotznik, J. V. D. Gracht, G. P. Behrmann, B. L. Good and S. A. Mathews, “94-GHz imager with extended depth of field,” IEEE Trans. Antennas Propag., vol. 57, no. 6, June, 2009.
    [7] H. Essen, H. Fuchs, M. Hagelen, S. Stanko, D. Notel, S. Erukulla, J. Huck, M. Schlechtweg, and A. Tessmann, “Concealed weapon detection with active and passive millimeterwave sensors, two approaches,” in German Microw. Conf., Mar. 2006.
    [8] S. Davis, B. Van Veen, S. Hagness, and F. Kelcz, “Breast tumor characterization based on ultrawideband microwave backscatter,” IEEE Trans. Biomed. Eng., vol. 55, pp. 237–246, Jan. 2008.
    [9] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. New York: Wiley, 2005.
    [10] H.-R. Chuang, L.-K. Yeh, P.-C. Kuo, K.-H. Tsai, and H.-L. Yue, “A 60-GHz millimeter-wave CMOS integrated on-chip antenna and bandpass filter,” IEEE Trans. Electron Device, vol. 58, no. 7, pp. 1837-1845, Jul. 2011.
    [11] C. R. Simovski, P. de Maagt, and I. V. Melchakova, “High-Impedance Surface Having Stable Resonance with Respect to Polarization Incidence Angle,” IEEE Trans. Antennas Propag., vol. 53, no. 3, pp. 908–914, Mar., 2005.
    [12] F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1551–1558, May, 2010.
    [13] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alex´opolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.
    [14] R. J. Langley and A. J. Drinkwater, “Improved empirical model for the Jerusalem cross,” IEE Proc. H Microw., Opt. and Antennas, vol. 129, no. 1, pp. 1-6, 1982.
    [15] M. K. T. Al-Nuaimi and W. G. Whittow, “Low profile dipole antenna backed by isotropic artificial magnetic conductor reflector,” in Eur. Conf. on Antennas Propag., Apr. 2010, pp. 1-5.
    [16] 岳翰林,毫米波CMOS射頻晶片嵌入式天線及人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年一月。
    [17] H. Mosallaei and K. Sarabandi, “Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate,” IEEE Trans. Antennas Propag., vol. 52, no. 9, pp. 2403-2414, Sep. 2004.
    [18] D. Neculoiu, A. Muller, K. Tang, E. Laskin, and S. P. Voinigescu, “160 GHz on-chip dipole antenna structure in silicon technology,” in Semicond. Conf., Oct. 2007, pp.245-248.
    [19] S. T. Nicolson, A. Tomkins, K. W.Tang, A. Cathelin, D. Belot, and S. P.Voinigescu, “A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS,”in Radio Freq. Integr. Circuits Symp., Apr. 2008, pp. 229-232.
    [20] B. Biglarbegian, M.R. Nezhad-Ahmadi, C. Hoggat, S. Hose, M. Fakharzadeh and S. Safavi-Naeini, “A 60 GHz on-chip slot antenna in silicon integrated passive device technology,” in Antennas and Propag. Soc. Int. Symp., July 2010, pp.1-4.
    [21] A Bisognin, C. Luxey, G. Jacquemod, R. Pilard, F. Gianesello, D. Gloria, D. Titz, C. Laporte, H. Ezzeddine, F. Ferrero and P. Brachat, “End-fire radiating antenna on IPD technology for 60 GHz communications,” in Antennas and Propag. Soc. Int. Symp., July 2013, pp.1830,1831.
    [22] T.-Y. Lin, T.-C. Chiu and D.-C. Chang, “Design of Dual-Band Millimeter-Wave Antenna-in-Package Using Flip-Chip Assembly, ” IEEE Trans. Compon. Packag. Technol., vol. 4, no. 3, pp. 385-391, Mar. 2014.
    [23] Z. Ma and Y. Kobayashi, “Design and realization of bandpass filters using composite resonators to obtain transmission zeros,” in Proc. 35th Eur. Microw. Conf., Oct. 2005, pp. 1255-1258.
    [24] C.-T. Chuang and S.-J. Chung, “New printed filtering antenna with selectivity enhancement, ” in Proc. 39th Eur. Microw. Conf., Sep. 2009, pp. 747-750.
    [25] C.-T. Chuang and S.-J. Chung, “A compact printed filtering antenna ssing a ground-intruded coupled line resonator,” IEEE Trans. Antennas Propag., vol.59, no.10, pp.3630-3637, Oct. 2011.
    [26] David M. Pozar, Microwave Engineering, 3rd ed, Wiley, 2005
    [27] Y.-H. Chuang, H.-L. Yue, C.-Y. Hsu, H.-R. Chuang, “A 77-GHz integrated on-chip yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology”, in IEEE Asia Pacific Microw. Conf. Dec. 2011. pp.449-452.
    [28] H.-L. Yue, Y.-H Chuang and H.-R. Chuang, “60-GHz CMOS Integrated On-Chip Yagi Antenna and Balun Bandpass Filter in 90-nm CMOS Technology,” in Eur. Conf. on Antennas Propag, Mar. 2012, pp.3546-3548.
    [29] C.-H. Liao, C.-H. Hsieh, R. Hu, D-C Niu and Y.-S. Shiao “W-band 90nm CMOS LNA design”, in IEEE Asia Pacific Microw. Conf. Dec. 2012. pp.430-432.
    [30] Y. Yan, Y. B. Karandikar, S. E. Gunnarsson, B. M. Motlagh, S. Cherednichenko, I. Kallfass, A. Leuther, and H. Zirath, “Monolithically integrated 200-GHz double-slot antenna and resistive mixers in a GaAs-mHEMT MMIC process,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2494-2503, Oct. 2011.
    [31] 蔡凱翔,毫米波寬頻、雙頻帶及極化分集CMOS射頻晶片嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國九十九年七月。
    [32] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. New York: Wiley, 1998.
    [33] C.-M. Tsai, S.-Y. Lee, and C.-C. Tsai, “Performance of a planar filter using a 0° feed structure,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362-2367, Oct. 2002.
    [34] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “A 77-GHz CMOS on-chip bandpass filter with balanced and unbalanced outputs,” IEEE Electron. Device Lett., vol. 31, no. 11, pp. 1205-1207, Nov. 2010.
    [35] R. N. Simons and R. Q. Lee, “On-wafer characterization of millimeter-wave antennas for wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 1, pp. 92-96, Jan. 1999.
    [36] Y. Huang and K. Boyle, Antenna From Theroy to Practice, 1st ed. John Wiley and Sons Ltd, 2008.
    [37] D. M. Pozar, Microwave and RF Design of Wireless Systems, 1st ed. John Wiley and Sons Ltd, 2001.
    [38] S. Saunders and A. Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd ed. John Wiley and Sons Ltd, 2007.

    下載圖示 校內:2020-09-03公開
    校外:2020-09-03公開
    QR CODE