簡易檢索 / 詳目顯示

研究生: 王宣人
Wang, Xuan-Ren
論文名稱: 噴覆成型及含鈧Al-10Zn-2Mg-1Cu-0.2Zr合金之微組織、機械性質及成型性的探討
Study on microstructure, mechanical properties and workability of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr aluminum alloy added with Sc
指導教授: 曹紀元
Taso, Ji-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 85
中文關鍵詞: 噴覆成型析出強化應變硬化
外文關鍵詞: precipitation, spray forming, working hard
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高強度鋁合金為機械性質優良的合金,但其最大的問題為焊接性不良,另一方面,為了增加強度而形成粗大晶粒及析出相,也增加了材料擠製上的困難。有鑑於此,本計劃之目的即在利用噴覆成型的新製程技術,開發出可焊型高強度鋁合金的擠錠及相關應用之研究。
    本計劃將依合金成分設計、噴覆成型之參數設定與噴覆成型擠錠焊接性質與其他相關基本性質的分析研究等步驟進行。在合金成分方面,暫時先以Ospray之7034或SS71合金為基礎,再添加Sc,設計出第一爐次的合金成分(wt%)為:Al-10Zn-2Mg-1Cu-0.2Zr-0.2Sc,根據相圖知道Sc在鋁基地中的固溶溫度約為655℃,所以容易產生細微之析出相而抑制晶粒粗大化,與Zn擴增固溶的效果,利用噴覆成型使晶粒及析出相細微化與減少高合金成分金屬巨觀偏析之特性,來探討噴覆成型高強度鋁合金圓錠在擠製及焊接的應用上是否有獨特的性質,並評估其相關之應用,預期可獲得下列成果:
    1.開發出噴覆成型製造之可焊型高強度鋁合金擠錠
    2.建立噴覆成型高強度鋁合金擠錠之最佳化製程參數
    了解噴覆成型高強度鋁合金擠錠焊接前後及熱處理前後之材料微結構組織與材料性質並建立其資料

    High strength Aluminum alloys have excellent mechanical properties. The Problems for these alloys are the poor weldability and the formation of large grain and precipitates following with increasing strength. The purpose of this project is to develop the high strength, weldable aluminum alloys by using spray forming process.
    In this project, the relative studies will be proceed as :(1) alloys design, (2) the optimum of spray forming process parameters, (3) the analysis for the weldability of spray formed alloys, (4) other mechanical properties of spray formed alloys. In the alloys design, 7034 or SS71 modified by SC will be used in this project. According the phase diagram, the temperature of solubility of Sc in the Al matrix is about 650C. It is easy to produce fine precipitates to constrain the coarsening of grains. So, this project will discuss the characteristics of the modified alloys by using spray forming process to refine the grain and precipitates and reduce the macrosegregation of elements.
    The expected result:
    1.Developing the spray formed, high strength alloys with excellent weldability
    2.Optimum of the spray forming process parameters
    3.Understanding the variation of microstrucetures and mechanical properties at before and after heat treatment

    目錄 IV 表目錄 VI 圖目錄 VII 中文摘要 1 Abstract 2 第一章序論 4 1.1 前言 4 1.2 基礎理論 4 1.2.1噴覆成型製程 4 1.2.2顯微結構 4 1.2.3熱處理 5 1.2.4析出硬化理論 6 1.2.5拉伸試驗原理 7 1.2.6成型性 8 第二章實驗方法 10 2.1 實驗目的 10 2.2 實驗材料 10 2.3 實驗材料 10 2.4 實驗製程 11 2.5 擠型製程 11 2.6 顯微組織分析 11 2.7 熱處理實驗 12 2.8 機械性質測試 12 2.9 成型性 13 第三章 結果與討論 14 3.1 噴覆成型製程參數 14 3.2 顯微結構之比較 14 3.3 成分分析 15 3.4 熱處理之結果 16 3.4.1固溶強化處理 16 3.4.2固溶時效處理:擠型後 17 3.5 拉伸測試 19 3.5.1 未熱處理擠型材常溫拉伸 19 3.5.2 T6處理常溫拉伸 20 3.5.3 破斷面觀察 22 3.5 成型性 23 第四章 結論 25 參考文獻 27 Table 1Solid solubility in binary Aluminum alloys 30 Table 2 Chemical compositions of Al-10Zn-2Mg-1Cu-0.2Zr(Run 186,193,200,207) 31 Table 3 Chemical compositions of Al-10Zn-2Mg-1Cu-0.2Zr(cast) 31 Table 4 Chemical compositions of Al-10Zn-2Mg-1Cu-0.2Zr-0.15Sc(Run208) 31 Table 5 Chemical compositions of Al-10Zn-2Mg-1Cu-0.2Zr(cast) 31 Table 6 Process Parameters of spray forming 31 Table 7 Porosity Distribution of R186 Billet 32 Table 8 Porosity Distribution of R193 Billet 32 Table 9 Porosity Distribution of R200 Billet 32 Table 10 Porosity Distribution of R207 Billet 32 Table 11 Porosity Distribution of R208 Billet 32 Table 12 Grain Sizes of As-cast & As-SFP Materials 33 Table 13 Composition of Precipitates of Grain Boundary 33 Table 14 Lattice parameter of Al matrix for different heat treatment parameter 33 Fig. 1 Schematic diagram of droplet deposition onto substrate during spray forming 34 Fig. 2 Schematic diagram of Spray Forming Process 34 Fig.3 Al-Cu phase diagram 35 Fig. 4 Al-Mg phase diagram 35 Fig. 5 Schematic diagram for simple extrusion setup 36 Fig. 6 Schematic diagram for simple extrusion mold 36 Fig. 7 Schematic diagram showing positions of the specimens taken for analysis of porosity distribution 37 Fig. 8 Macrostructures of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr:Run186 37 Fig. 9 Macrostructures of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr t:Run193 37 Fig. 10 Macrostructures of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr:Run200 38 Fig. 11 Macrostructures of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr:Run207 38 Fig. 12 Macrostructures of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr-0.15Sc :Run208 38 Fig. 13 SEM Micrographs of Al-10Zn-2Mg-1Cu-0.2Zr alloy 39 Fig. 14 SEM Micrographs of Al-10Zn-2Mg-1Cu-0.2Zr-0.15Sc alloy 40 Fig. 15 Center microstructures of as-cast and as-spray-formed materials 41 Fig. 16 Outer microstructures of as-cast and as-spray-formed materials 41 Fig. 17 Second phases of as-cast and as-spray-formed materials 42 Fig. 18 TEM of cast Al-10Zn-2Mg-1Cu-0.2Zr after extrusion at 375℃ 43 Fig. 19 TEM of cast Al-10Zn-2Mg-1Cu-0.2Zr after extrusion at 375℃ 44 Fig. 20 TEM of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr after extrusion at 375℃ 45 Fig. 21 TEM of cast Al-10Zn-2Mg-1Cu-0.2Zr-0.15Sc after extrusion at 375℃ 46 Fig. 22 TEM of spray-formed Al-10Zn-2Mg-1Cu-0.2Zr-0.15Sc after extrusion at 375℃ 47 Fig. 23 Hardness vs. time of various extruded materials solutionized at 440℃ 48 Fig. 24 Hardness vs. time of various extruded materials solutionized at 480℃ 49 Fig. 25 Hardness vs. time of various extruded materials solutionized at 440℃ for 2 hrs then aged at 100℃ 50 Fig. 26 Hardness vs. time of various extruded materials solutionized at 440℃ for 2hrs then aged at 150℃ 51 Fig. 27 Hardness vs. time of various extruded materials solutionized at 440℃ for 2hrs then aged at 200℃ 52 Fig. 28 Hardness vs. time of various extruded materials solutionized at 440℃ for 2 hrs and aged at 100℃ for 1-7 hr followed aged at 150℃ for 1-8 hr 53 Fig. 29 Engineering stress vs. engineering strain of various extruded materials without heat treatment 54 Fig. 30 True stress vs. true strain of various extruded materials without heat treatment 55 Fig. 31 Morphologies of tensile test specimen extruded without heat treatment 56 Fig. 32 Al-Zn phase diagram 57 Fig. 33 Engineering stress vs. engineering strain of extruded materials solutionized at 400℃ for 2 hrs aged at 150 ℃ for 8 hrs 58 Fig. 34 True stress vs. True strain of extruded materials solutionized at 400℃ for 2 hrs aged at 150 ℃ for 8 hrs 59 Fig. 35 Morphologies of tensile test specimen of extruded materials solutionized at 400℃ for 2 hrs aged at 150 ℃ for 8 hrs 60 Fig. 36 Engineering stress vs. engineering strain of extruded materials solutionized at 400℃ for 2 hrs aged at 200 ℃ for 8 hrs 61 Fig. 37 True stress vs. True strain of extruded materials solutionized at 400℃ for 2 hrs aged at 200 ℃ for 8 hrs 62 Fig. 38 Morphologies of tensile test specimen of extruded materials solutionized at 400℃ for 2 hrs aged at 200 ℃ for 8 hrs 63 Fig. 39 Fracture surface of SPF Al-Zr-Sc tensile test specimen extruded without heat treatment 64 Fig. 40 Fracture surface of Cast Al-Zr-Sc tensile test specimen extruded without heat treatment 65 Fig. 41 Fracture surface of SPF Al-Zr tensile test specimen extruded without heat treatment 66 Fig. 42 Fracture surface of Cast Al-Zr tensile test specimen extruded without heat treatment 67 Fig. 43 Fracture surface of SPF Al-Zr-Sc tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 150 ℃ for 8 hrs 68 Fig. 44 Fracture surface of Cast Al-Zr-Sc tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 150 ℃ for 8 hrs 69 Fig. 45 Fracture surface of SPF Al-Zr tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 150 ℃for 8 hrs 70 Fig. 46 Fracture surface of Cast Al-Zr tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 150 ℃ for 8 hrs 71 Fig. 47 Fracture surface of SPF Al-Zr-Sc tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 200 ℃ for 8 hrs 72 Fig. 48 Fracture surface of Cast Al-Zr-Sc tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 200 ℃ for 8 hrs 73 Fig. 49 Fracture surface of SPF Al-Zr tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 200 ℃ for 8 hrs 74 Fig. 50 Fracture surface of Cast Al-Zr tensile test specimen extruded extruded , solutionized at 400℃ for 2 hrs ,aged at 200 ℃ for 8 hrs 75 Fig. 51 Schematic curve of (Left) extrusion pressure vs. ram displacement curve; and (Right) limit diagram [32] 76 Fig. 52 Limit diagrams of (Left) SFP Al-Zr-Sc alloys, and (Right) Cast Al-Zr-Sc alloys, extruded at various temperatures and ram speeds. (∆: insufficient extrusion pressure; �: surface damage; □: operating area) 76 Fig. 53 Limit diagrams of (Left) SFP Al-Zr-Sc alloys, and (Right) Cast Al-Zr-Sc alloys, extruded at various temperatures and ram speeds. (∆: insufficient extrusion pressure; �: surface damage; □: operating area) 77 Fig. 54 Morphologies and surface conditions of SFP Al-Zr-Sc alloy at: (a) T = 320℃, Vram = 0.373 mm/min; (b) T = 360℃, Vram = 0.373 mm/min; (c) T = 360℃ Vram = 1.87 mm/min. (d)T = 360℃, Vram = 9.33 mm/min; (e) T = 400℃ Vram = 9.33 mm/min; (f) T = 400℃ Vram = 46.7 mm/min. (g)T = 440℃, Vram = 46.7 mm/min; (h) T = 440℃ Vram = 117 mm/min; 79 Fig. 55 Morphologies and surface conditions of Cast Al-Zr-Sc alloy at: (a) T = 320℃, Vram = 0.373 mm/min; (b) T = 360℃, Vram = 0.373 mm/min; (c) T = 360℃ Vram = 1.87 mm/min. (d)T = 360℃, Vram = 9.33 mm/min; (e) T = 400℃ Vram = 9.33 mm/min; (f) T = 400℃ Vram = 46.7 mm/min. (g)T = 440℃, Vram = 46.7 mm/min; (h) T = 440℃ Vram = 117 mm/min; 81 Fig. 56 Morphologies and surface conditions of SFP Al-Zr alloy at: (a) T = 320℃, Vram = 0.373 mm/min; (b) T = 360℃, Vram = 0.373 mm/min; (c) T = 360℃ Vram = 1.87 mm/min. (d)T = 360℃, Vram = 9.33 mm/min; (e) T = 400℃ Vram = 9.33 mm/min; (f) T = 400℃ Vram = 46.7 mm/min. (g)T = 440℃, Vram = 46.7 mm/min; (h) T = 440℃ Vram = 117 mm/min; 83 Fig. 57 Morphologies and surface conditions of Cast Al-Zr alloy at: (a) T = 320℃, Vram = 0.373 mm/min; (b) T = 360℃, Vram = 0.373 mm/min; (c) T = 360℃ Vram = 1.87 mm/min. (d)T = 360℃, Vram = 9.33 mm/min; (e) T = 400℃ Vram = 9.33 mm/min; (f) T = 400℃ Vram = 46.7 mm/min. (g)T = 440℃, Vram = 46.7 mm/min; (h) T = 440℃ Vram = 117 mm/min; (h) T = 440℃ Vram = 233mm/min 85

    1.牧野昇,工業新材料之應用,1978
    2.Zhimin Yin, Qinglin Pan, Yonghong Zhang, Feng Jiang :
    Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys, Materials Science and Engineering A280 (2000) 151-155
    3.A.R.E. Singer,(1970):Principles of Spray Rolling of Metals,Metala and Materials,4,6,pp.246~257
    4. A.R.E. Singer, (1972):Aluminum and Al -alloy Strip Produced by Spray Deposition and Rolling, J.Inst. Met. , 100, pp.185~190
    5.E.J.Lavernia and Y. Wu,: Spray Atomization and Deposition ,John Wiley and Sons Ltd, England(1996)
    6.Y Fuxiao, C Jianzhong, S.Ranganathan, E.S. Dwarakadasa: Fundamental Differences Between Spray Forming and Ot her Semisolid Process, Materials Science and Engineering A304-306 (2001)PP.621~626
    7.P.S. Grant, W.T. Kim and B. Cantor: Spray Forming of Aluminum-Copper alloys Materials Science and Engineering:134A (1991)PP.1111~1114
    8.Inkin, S. V., Kurdyumov, A. V., Napalkov, V. I., Pankratov, D.M., and Semechenkov, A. A., Tekhnologiya Liogkikh Splavov, 1990, 4, 52.
    9.K. B. Hyde , A. E. Norman and P. B. Prangnell :The effect of cooling rate on the morphology of primary Al 3Sc intermetallic particles in Al -Sc alloys Acta Materialia. 49 (2001) 1327-1337
    10.Tadashi Aiura, Nobutaka Sugawara, Yasuhiro Miura: The effect of scandium on the as-homogenized microstructure of 5083 alloy for extrusion Materials science & Engineering A280 (2000), PP. 139-145
    11.G. Waterloo, V. Hansen, J. Gjonnes, S.R. Skjervold : Effect of predeformation and preaging at room temperature in Al -Zn-Mg-(Cu,Zr) alloys Materials science & Engineering A303 (2000), PP. 226-233
    12. Lennart Backerud, Ella Krol , Jarmo Tamminen, Solidification Characteristics of Aluminium Alloys, volume 1: Wroought Alloys, Department of Structural Chemistry
    Arrhenius Laboratory , University of Stockholm, 1986
    13. William F. Hosford, Robert M. Caddell, ‘Metal Forming, Mechanics and Metallurgy’, 1983
    14. T. Sheppard, ‘Extrusion of Aluminium Alloys’, Department of Product Design and Manufacture, Boumemouth University, 1999
    15. W. J. Liu, ‘A Unified Theoretical Model for Work-Hardening of Polycrystalline Metals’, Acta mater. Vol. 44, No. 6, pp.2337~2343, 1996
    16. A. J. Beaudoin, A. Acharaya, S. R. Chen, D. A. Korzekwa and M. G. Stout, ‘Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals’, Acta mater. Vol. 48, pp.3409~3423, 2000
    17. Xuexing Yao, Stanislaw Zajac and Bevis Hutchinson, ‘Estimation of Compression Flow Stress From Post-Deformation Hardness in Al -Mg Alloys’, Scripta Materialia,
    vol. 41, No. 3, pp. 253~258, 1999
    18. J. Sarkar, Y. V. K. Prasad, M. K. Surappa, ‘Optimization of Hot Workability of an Al-Mg-Si Alloy Using Processing Maps ’, Journal of Materials Science, vol. 30, pp.2843~2848, 1995
    19.R. W. Evans, A. G. Leatham and R. G. Brooks (1985) : Osprey Preform Process, Powder Metallurgy, 28, 1, pp.13
    20.E. J. Lavernia, G. Rai and N. J. Grant,(1986):Liquid Dynamic Compaction of a Rapidly Solidified High Strength Aluminum Alloy, Int. J. of Powder Metall, 22,1, pp.9~14
    21. Lennart Backerud、Ella Krol 、Jarmo Tamminen ,: Solidification Characteristics of Aluminium Alloys,(1986), pp.144~145
    22.R. Ferragut, A. Somoza and A. Tollet : Microstructure evolution of 7012 alloy during the early stages of artificial ageing Acta Materialia. Vol.47, No. 17 (1999) 4355-4364
    23.A. k. Gupta, M. C. Chaturvedi and A. K. Jena,(1989): Effects of Silicon Additions on Aging Behaviour of Al-1.52Cu.0.75Mg Alloy,Mater. Sci. Tech, 5, 1, pp.52~55
    24.John E. Hatch, Aluminum, Ohio, American Society for Metals, (1984), pp101-104, 145-148, 235, 264-271, 363-36
    25.Robert E. Reed-Hill, Reza Abbaschian : Physical Metallurgy Principles ,pp.16-7~16-9
    26.I. M. Lifshits and V.V. Slyozov : The Kinetics of Precipitation from Supersaturated Solid Solution, Chem Solids, vol.19 ,(1961), pp. 35-50
    27.J. D. Barid,”Dynamic Strain Aging”, in Inhomogenecity of Plastic Deformation, Edited by Reed-Hill, American Society for Metals, Metals Park, OH,(1973) pp.191-222,
    28.B. J. Brindley and P. J. Worthington,” Yield-point phenomena in substitutional alloys”, Met. Rev., (1970), vol.15, pp. 101-114
    29.E. Pink and A. Grinberg, “ Partical aspect of the Portevin-LeChatelier effect(Ⅰ)”, Aluminium, (1984), vol. 60(9), pp.E601-E605
    30. E. Pink and A. Grinberg, “ Partical aspect of the Portevin-LeChatelier effect(Ⅱ)”, Aluminium, (1984), vol. 60(9), pp.E646-E650
    31.J. E. King, C. P. You and J. F, Knott, “Serrated yielding and the localized shear failure mode in aluminium alloys”, Acta Metall., (1981), vol. 29, pp.1553-1566
    32.Robert A. Ayres, “ Alloying aluminum with Mg for ductility at warm temperature (25-25oC), Met. Trans., (1979), vol. 10A, pp.849-854
    33.B. J. Brindley and P. J. Worthington, “ Serrated yielding in Al -3Mg”, Acta Materialia. Vol.7, (1969), pp.1357-1361
    34.Robert E. Reed-Hill, Reza Abbaschian : Physical Metallurgy Principles , pp.5-30~5-35
    35.Robert E. Reed-Hill, Reza Abbaschian : Physical Metallurgy Principles , pp.9-16~9-18
    36.J. M. Robinson, “Serrated flow in aluminum base alloys”, International Materials Reviews, (1994), vol. 39, No.6, pp.217-22
    37. T. Sheppard, “Extrusion of aluminum alloys”, Kluwer academic publis

    無法下載圖示 校內:2053-07-30公開
    校外:2053-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE