簡易檢索 / 詳目顯示

研究生: 蔡宜珊
Tsai, I-Shan
論文名稱: 穿著不同鞋底硬度慢跑鞋對下肢動力特性的影響
Effects of the use of different midsole hardness running shoes on kinetic characteristics of lower extremity
指導教授: 邱宏達
Chiu, Hung-Ta
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 77
中文關鍵詞: 鞋底硬度跑步機跑步肌肉調適能力肌電訊號
外文關鍵詞: Sole hardness, Treadmill running, Muscle tuning, EMG
相關次數: 點閱:137下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究欲探討穿著不同鞋底硬度慢跑鞋對下肢運動學及肌肉活動的影響,以及交替穿著不同硬度後下肢的適應能力。方法:受試者為25位有運動習慣之20-33歲之間的男性跑者,其中13位擷取下肢運動學參數,另12位擷取下肢主要肌群的肌電訊號。受試鞋為硬度70C(硬)及45C(軟),依不同穿著順序排列成組合A:A1(硬)-A2(軟)-A3(硬)及組合B:B1(軟)-B2(硬)-B3(軟),組合分兩次(間隔一天以上)進行。肌電試驗部分為黏貼電極貼片(electrode)於右側股直肌、脛前肌、股二頭肌、股二頭肌及光標一顆於鞋跟後,依序穿著A1(B1)、A2(B2)及A3(B3)後於跑步機上收集60步資料。運動學試驗則黏貼光標五顆於右側股骨大轉子、脛骨外髁、外踝、鞋跟與前幫,依序穿著A1(B1)、A2(B2)及A3(B3)後於跑步機上收集28步資料。統計分析則以單因子重複量數變異數(one-way repeated measures ANOVA)分析將A1、A2、A3、B1、B2及B3六種不同情境下運動學參數結果及肌電訊號的差異。結果:穿著硬底慢跑鞋在著地前50ms會有較大的膝關節角速度、腳跟合速度、腳跟垂直方向速度;著地瞬間則是有較大的鞋底角度、較小的腳跟合速度及較大的腳跟左右方向速度;著地後50ms則是有較大的踝關節角度和膝關節角速度;著地後100ms有較大踝關節角速度及較小的腳跟垂直方向速度;交替穿著後發現,僅在穿著組合A(70C-45C-70C)的膝關節角度著地後達顯著差異,人體在此組合順序下可能需要利用改變膝關節角速度來進行調整適應。肌電訊號部分,不論是著地前後股直肌、脛前肌、股二頭肌及腓腸肌的活化程度及標準差皆沒有因為穿著不同硬度鞋底或交替穿著後達到顯著差異。結論:交替穿著不同鞋底硬度慢跑鞋下肢運動學參數會發生改變,此乃是人體對鞋底硬度造成地面衝擊力不同所作的動作調整;穿著硬底鞋時會受到前一雙軟底鞋的影響,而主要影響在於膝關節角速度的部分。不同受試者間可能採用不同肌肉調適機制,也就是選擇不同的肌群活化,來因應不同鞋底硬度所造成的衝擊效果,因而造成各肌群肌電訊號在統計結果沒有明顯差異。

    Purpose: The purpose of this study was to investigate the influence of alternately using different midsole hardness on the kinematics and EMG (electromyography) of lower extremities. Methods: During capturing the kinematic data of thirteen volunteered subjects, five markers were placed on Greater trochanter, Lateral condyle of tibia, Lateral malleolus, heel counter and toe boxing. In another experiment, the EMG electrodes were placed on RF(muscle bellies of rectus femoris), LBF(muscle bellies of long head of biceps femoris), TA(muscle bellies of tibialis anterior) and GA(muscle bellies of gastrocnemius medialis) of twelve volunteered subjects. The tested shoes were custome-made by the FRT (Footwear & Recreation Technology Research Institute), including misole hardness of shore 70C and 45C. All participants were asked to wear the shoes in two ranking on the two different days, A: A1(70C)-A2(45C)-A3(70C) and B: B1(45C)-B2(70C)-B3(45C). One way repeated measures ANOVA was used to identify the differences between the six shoe conditions. Result: Under wearing hard-soled shoes, higer knee angular velocity, heel velocity and vertical heel velocity occurred at 50ms pre-heelstrike. Greater sole angle、horizontal heel velocity and smaller heel velocity were found at touchdown. Subjects performed greater ankle angle and knee angular velocity at 50ms post-heelstrike and greater ankle angular velocity and smaller vertical heel velocityat at 100ms post-heelstrike. In ranking A (70C-45C-70C), knee angular velocity were different significantly between A1 and A3 at 50ms post-heelstrike. While there were no significant differences for all the EMGs of the muscles in all shoe conditions. Conclusion: Based on the results, wearing the soft-soled shoe would affect the knee kinematics as wearing the hard-soled shoe again. However, this alternately wearing effect didn’t occur in ranking of soft-hard-soft. There were no significantly different EMG signals of the four muscles for the six shoe conditions because of the subject specific muscle tunning ability for different soles of hardness.

    中文摘要................................................I Abstract...............................................II 誌謝...................................................III 表目錄..................................................VI 圖目錄..................................................VII 第壹章緒論...............................................1 第一節 問題背景...........................................1 第二節 研究目的...........................................2 第三節 操作型定義.........................................2 第四節 研究限制...........................................2 第貳章 文獻探討...........................................3 第一節 鞋底硬度...........................................3 第二節 不同硬度鞋底慢跑鞋對人體下肢的影響......................3 第三節 適應策略...........................................6 第参章研究方法與步驟.......................................9 第一節 研究對象及基本資料...................................9 第二節 研究工具...........................................11 第三節 實驗流程與步驟......................................12 第四節 資料分析方法 ........................................15 第肆章 研究結果...........................................17 第一節 交替穿著不同硬度慢跑鞋後各運動學參數的結果...............17 第二節 鞋底硬度對下肢肌肉活化大小的差異.......................29 第伍章 討論..............................................34 第一節 鞋底硬度對下肢運動學的影響............................35 第二節 鞋底硬度對下肢肌肉活化的影響...........................37 第陸章 結論...............................................39 參考文獻..................................................40 一、 中文部分..........................................40 二、 西文部分..........................................40 附錄一:受試者同意書........................................43 附錄二: 受試者基本資料表....................................46 附錄三: 14位受試者之各運動學參數結果資料表.....................47 附錄四: 12位受試者於個時間點下的肌肉活化大小...................62

    一、 中文部分
    邱宏達、相子元、楊文賓(1998)。鞋底避震反彈之人體及材料功能測試。中華醫學工程期刊,18(3),161-167。
    邱宏達、相子元、林德嘉(2002)。由地面反作用力評估鞋底避震能力-材料與人體測試之比較。中華民國體育學報,32,69-78頁。
    邱宏達(2002)。赤足與穿鞋跑之著地策略分析。大專體育學刊,4(2),101-108。
    楊昌斌、黃智能、張少遜、曹德弘(2007)。肥胖者的能量攝取與運動。基層醫學,22(11),403-407

    二、 西文部分
    Burden , A.M., Trew M., &Baltzopoulos V.(2003). Normalisation of gait EMGs: a re-examination. Journal of Electromyography and Kinesiology, 13,519–532.
    Boyer, K. A., & Nigg, B. M. (2004). Muscle activity in the leg is tuned in response to impact force characteristics. Journal of biomechanics, 37(10), 1583-1588.
    Clarke, T., Frederick, E., & Cooper, L. (1983). Biomechanical measurement of running shoe cushioning properties.Int.J.Sports Med, 4,247-251.
    Coza, A., & Nigg, B. M. (2008). Compression Apparel Effects on Soft Tissue Vibrations.
    De Wit, B., De Clercq, D., & Lenoir, M. (1995). The effect of varying midsole hardness on impact forces and foot motion during foot contact in running. Journal of Applied Biomechanics, 11, 395-406.
    De Luca, C. (1997). The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 13, 135-163.
    DivertC., MornieuxG., BaurH., MayerF., BelliA.(2005).Mechanical Comparison ofBarefoot and Shod Running.Int J Sports Med ,26,593–598.
    Dudley, G. A., Abraham, W.M., & Terjun, R.L. (1982) Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle.the American Physiological Society,844-850
    Emery, C. A., Cassidy, J. D., Klassen, T. P., Rosychuk, R. J., & Rowe, B. H. (2004). The effectiveness of a proprioceptive balance training program in healthy adolescents: A cluster randomized controlled trial. American Journal ofEpidemiology, 159(11), S46-S46.
    Grimston, S., & Zernicke, R. (1993). Exercise-related stress responses in bone. Journal of Applied Biomechanics, 9, 2-2.
    Hardin, E., Van Den Bogert, A.,& Hamill, J. (2004). Kinematic adaptations during running: effects of footwear, surface, and duration. Medicine & Science in Sports & Exercise, 36(5), 838.
    Hwang, I.S., Lee, H.M., Cherng, R.J.,& Chen, J.J. J.(2003)Electromyographic analysis of locomotion for healthy and hemiparetic subjects-study of performance variability and rail effect on treadmill.Gait and Posture, 18, 1-12.
    Jih-Lei Liang & Hung-Ta Chiu(2010). Cushioning of the Running Shoes after Long-Term Use. Marquette ,US: International Society of Biomechanics in Sports 2010 Congress
    Kurz, M., & Stergiou, N. (2004). Does footwear affect ankle coordination strategies? Journal of the American Podiatric Medical Association, 94(1), 53.
    Kersting, U. G. (2011). Regulation of impact forces during treadmill running. Footwear Science, 3(1), 59-68.
    Kurz, M., & Stergiou, N. (2004). Does footwear affect ankle coordination strategies? Journal of the American Podiatric Medical Association, 94(1), 53.
    McLeod, K., Bain, S., & Rubin, C. (1990). Dependence of bone adaptation on the frequency of induced dynamic strains. Trans Orthop Res Soc, 15, 103.
    Nigg, B. (2009). Biomechanical considerations on barefoot movement and barefoot shoe concepts. Footwear Science, 1(2), 73-79.
    Nigg, B. M. (2010). Biomechanics of Sport Shoes: University of Calgary.
    Nigg, B. M., & Gérin-Lajoie, M. (2011). Gender, age and midsole hardness effects on lower extremity muscle activity during running. Footwear Science, 3(1), 3-12.
    Nigg, B., & Wakeling, J. (2001). Impact forces and muscle tuning: A new paradigm. Exercise and Sport Sciences Reviews, 29(1), 37.
    Queen, R. M., Gross, M. T., & Liu, H. Y. (2006). Repeatability of lower extremity kinetics and kinematics for standardized and self-selected running speeds. Gait & posture, 23(3), 282-287.
    Robbins, S., & Hanna, A. (1987). Running-related injury prevention through barefoot adaptations. Medicine & Science in Sports & Exercise, 19(2), 148.
    Wakeling, J., & Nigg, B. (2001). Modification of soft tissue vibrations in the leg by muscular activity. Journal of Applied Physiology, 90(2), 412.
    Wakeling, J. M., Von Tscharner, V., Nigg, B. M., & Stergiou, P. (2001). Muscle activityin the leg is tuned in response to ground reaction forces. Journal of Applied Physiology, 91(3), 307-1317.
    Wakeling, J. M., Pascual, S. A., & Nigg, B. M. (2002). Altering muscle activity in the lower extremities by running with different shoes. Medicine and Science in Sports and Exercise, 34(9), 1529-1532.
    Wright, I.C., Neptune R.R., van den Bogert A.J.& Nigg B.M (1998) . Passive regulation of impact forces in heel-toe running. Clinical Biomechanics,13,521-531.
    Zadpoor, A., & Nikooyan, A. (2010). Modeling muscle activity to study the effects of footwear on the impact forces and vibrations of the human body during running.Journal of biomechanics, 43(2), 186-193.

    下載圖示 校內:2014-02-17公開
    校外:2017-02-17公開
    QR CODE