簡易檢索 / 詳目顯示

研究生: 黃威融
Huang, Wei-Jung
論文名稱: 以尼龍6/甲酸溶液研究電紡絲製程中泰勒錐內流場與液柱行為
Study on the flow field inside Taylor cone and behavior of electrospinning jet by Nylon 6/FA solutions
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 166
中文關鍵詞: 電紡絲泰勒錐粒子影像測速電紡液柱
外文關鍵詞: Electrospinning, Taylor cone, Particle image velocimetry, Electrospinning jet
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以Nylon 6/FA溶液研究電紡絲過程中泰勒錐內流場,並探討Nylon 6濃度對流場的影響。通過在Nylon 6/FA溶液中加入少量玻璃珠並以綠光雷射照射泰勒錐即可觀察玻璃珠的流動以了解泰勒錐內的流場,這種技術被稱為粒子影像測速。藉由分析玻璃珠的速度可得知泰勒錐內溶液的流速數量級為1 mm/s,且拉伸速率遠小於Nylon 6/FA溶液的鬆弛速率,表明在泰勒錐內不會發生流動誘導相分離。

    以高速攝影機觀察電紡Nylon 6/FA溶液時的液柱行為,可發現筆直液柱有左右擺動的現象,此現象應該與液柱內部發生流動誘導相分離有關。探討濃度對液柱左右擺動頻率的影響,發現Nylon 6濃度增加液柱左右擺動頻率下降。

    This study investigated the electrospinning process of Nylon 6/FA solutions, focusing on the flow field inside the Taylor cone and the impact of Nylon 6 concentration on this flow. It also aimed to determine the relationship between the flow field inside Taylor cone and the morphology of the as-spun fibers collected on the grounded collector. By adding small amounts of glass spheres to the electrospinning solutions and using a green laser to illuminate the Taylor cone, particle image velocimetry was employed to observe the movement of the glass spheres. It was found that for lower concentrations (7 wt.% and 11 wt.%), there was a recirculation flow inside the Taylor cone, while higher concentrations (15 wt.% and 21 wt.%) showed direct downward flow into the fluid jet. The flow velocity inside the Taylor cone was determined to be around 1 mm/s, and the extension rate induced by electric field was found to be much lower than the relaxation rate of the Nylon 6/FA solution, indicating that flow-induced phase separation did not occur inside the Taylor cone.

    Additionally, high-speed camera observations of the electrospinning jet revealed lateral vibrations in the straight jet region, which were likely related to flow-induced phase separation within the jet. The study found that as the concentration of Nylon 6 increased, the frequency of these oscillations decreased.

    摘要 i Extended Abstract ii 誌謝 xi 目錄 xiii 表目錄 xv 圖目錄 xvi 符號 xxi 一、前言 1 二、簡介 2 2.1 電紡絲模式 2 2.1.1 dripping mode 2 2.1.2 pulsating mode 2 2.1.3 cone-jet mode 2 2.1.4 multi-jet mode 3 2.2 粒子影像測速(particle image velocimetry, PIV) 3 2.3 高速攝影機 3 三、文獻回顧 5 3.1 靜電紡絲(electrospinning) 5 3.1.1 靜電紡絲簡介 5 3.1.2 靜電紡絲發展 6 3.2 Nylon 6 10 3.2.1 Nylon 6 簡介 10 3.2.2 Nylon 6 靜電紡絲 10 3.3 泰勒錐內流場 17 3.4 粒子影像測速(PIV) 20 四、實驗 61 4.1 實驗藥品 61 4.2 實驗儀器 62 4.2.1 電紡溶液製備 62 4.2.2 電紡絲實驗 62 4.2.3 泰勒錐內流場觀察實驗 64 4.2.4 分析儀器 65 4.3 實驗步驟 66 4.3.1 電紡絲溶液製備 66 4.3.2 電紡絲實驗 67 4.3.3 泰勒錐內流場觀察實驗 67 4.3.4 以高速攝影機拍攝電紡絲液柱 68 4.4 實驗流程圖 69 五、結果與討論 75 5.1 電紡溶液性質 75 5.2 電紡工作區間 75 5.3 泰勒錐內流場觀察 75 5.3.1 電紡添加直徑 5 μm 玻璃珠之 Nylon 6/FA 溶液 76 5.3.2 電紡添加直徑 1 μm 玻璃珠之 Nylon 6/FA 溶液 78 5.4 電紡液柱 80 5.4.1 電紡液柱長度變化 80 5.4.2 電紡液柱擺動行為 80 5.5 電紡所得纖維形態 81 六、結論 123 七、參考文獻 124 八、附錄 130

    [1] A. Formhals, “Process and apparatus for preparing artificial threads”, US patent No. 1975504 (1934).
    [2] P. K. Baumgarten, “Electrostatic spinning of acrylic microfibers”, Journal of Colloid and Interface Science 36, 71-79 (1971).
    [3] L. Larrondo, R. St. John Manley, “Electrostatic fiber spinning from polymer melts. I. experimental observations on fiber formation and properties”, Journal of Polymer Science: Polymer Physics Edition 19, 909-920 (1981).
    [4] L. Larrondo, R. St. John Manley, “Electrostatic fiber spinning from polymer melts. II. examination of the flow field in an electrically driven jet”, Journal of Polymer Science: Polymer Physics Edition 19, 921-932 (1981).
    [5] L. Larrondo, R. St. John Manley, “Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt”, Journal of Polymer Science: Polymer Physics Edition 19, 933-940 (1981).
    [6] J. Doshi, D. H. Reneker, “Electrospinning Process and Applications of Electrospun Fibers”, Journal of Electrostatics 35, 151-160 (1995).
    [7] D. H. Reneker, I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning”, Nanotechnology 7, 216-223 (1996).
    [8] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning”, Polymer 40, 4585-4592 (1999).
    [9] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics 87, 4531-4547 (2000).
    [10] M. G. McKee, G. L. Wilkes, R. H. Colby, T. E. Long, “Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters”, Macromolecules 37, 1760-1767 (2004).
    [11] J. H. Yu, S. V. Fridrikh, G, C. Rutledge, “The role of elasticity in the formation of electrospun fibers”, Polymer 47, 4789–4797 (2006).
    [12] M. E. Helgeson, K. N. Grammatikos, J. M. Deitzel, N. J. Wagner, “Theory and kinematic measurements of the mechanics of stable electrospun polymer jets”, Polymer 49, 2924–2936 (2008).
    [13] I. Greenfeld, K. Fezzaa, M. H. Rafailovich, E. Zussman, “Fast X-ray Phase-Contrast Imaging of Electrospinning Polymer Jets: Measurements of Radius, Velocity, and Concentration”, Macromolecules 45, 3616−3626 (2012).
    [14] R. Sahay, C. J. Teo, Y. T. Chew, “New correlation formulate for the straight section of the electrospun jet from a polymer drop”, Journal of Fluid Mechanics 735, 150–175 (2013).
    [15] C. Wang, Y. Wang, T. Hashimoto, “Impact of Entanglement Density on Solution Electrospinning: A Phenomenological Model for Fiber Diameter”, Macromolecules 49, 7985−7996 (2016).
    [16] C. Wang, T. Hashimoto, “Self-Organization in Electrospun Polymer Solutions: From Dissipative Structures to Ordered Fiber Structures through Fluctuations”, Macromolecules 51, 4502−4515 (2018).
    [17] C. Wang, T. Hashimoto, Y. Wang, H. Y. Lai, C. H. Kuo, “Formation of Dissipative Structures in the Straight Segment of Electrospinning Jets”, Macromolecules 53, 7876−7886 (2020).
    [18] C. Wang, T. Hashimoto, “A Scenario of a Fiber Formation Mechanism in Electrospinning: Jet Evolves Assemblies of Phase-Separated Strings That Eventually Split into As-spun Fibers Observed on the Grounded Collector”, Macromolecules 53, 9584−9600 (2020).
    [19] C. Wang, T. Hashimoto, Y. Wang, “Extension Rate and Bending Instability of Electrospinning Jets: the Role of the Electric Field”, Macromolecules 54, 7193−7209 (2021).
    [20] J. S. Stephens, D. B. Chase, J. F. Rabolt, “Effect of the Electrospinning Process on Polymer Crystallization Chain Conformation in Nylon-6 and Nylon-12”, Macromolecules 37, 877-881 (2004).
    [21] K. H. Lee, K. W. Kim, A. Pesapane, H. Y. Kim, J. F. Rabolt, “Polarized FT-IR Study of Macroscopically Oriented Electrospun Nylon-6 Nanofibers”, Macromolecules 41, 1494-1498 (2008).
    [22] C. B. Giller, D. B. Chase, J. F. Rabolt, C. M. Snively, “Effect of solvent evaporation rate on the crystalline state of electrospun Nylon 6”, Polymer 51, 4225-4230 (2010).
    [23] M. B. Bazbouz, G. K. Stylios, “The Tensile Properties of Electrospun Nylon 6 Single Nanofibers”, Journal of Polymer Science: Part B: Polymer Physics 48, 1719–1731 (2010).
    [24] B. Ding, C. R. Li, Y. Miyauchi, O. Kuwaki, S. Shiratori, “Formation of novel 2D polymer nanowebs via electrospinning”, Nanotechnology 17, 3685–3691 (2006).
    [25] K. T. Nama, H. R. Pantb, J. W. Jeonga, B. Pantb, B. I. Kimd, H. Y. Kima, “Solvent degradation of nylon-6 and its effect on fiber morphology of electrospun mats”, Polymer Degradation and Stability 96, 1984-1988 (2011).
    [26] M. B. Bazbouz, G. K. Stylios, “Alignment and Optimization of Nylon 6 Nanofibers by Electrospinning”, Journal of Applied Polymer Science 107, 3023–3032 (2008).
    [27] S. S. Ojha, M. Afshari, R. Kotek, R. E. Gorga, “Morphology of Electrospun Nylon-6 Nanofibers as a Function of Molecular Weight and Processing Parameters”, Journal of Applied Polymer Science 108, 308–319 (2008).
    [28] S. L. Shenoy, W. D. Bates, H. L. Frisch, G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit”, Polymer 46, 3372–3384 (2005).
    [29] H. Zhang, L. Zhang, Q. X. Jia, C. M. Shi, J. Yang, “Preparation of Porous Nylon 6 Fiber via Electrospinning”, Polymer Engineering & Science 55, 975-1218 (2015).
    [30] H. Fong, W. D Liu, C. S. Wang, R. A. Vaia, “Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite”, Polymer 43, 775-780 (2002).
    [31] D. Cho, E. Zhmayev, Y. L. Joo, “Structural studies of electrospun nylon 6 fibers from solution and melt”, Polymer 52, 4600-4609 (2011).
    [32] J. Chung, J. W. Chung, R. D. Priestley, S. Y. Kwak, “Confinement-Induced Change in Chain Topology of Ultrathin Polymer Fibers”, Macromolecules 51, 4229−4237 (2018).
    [33] Y. Liu, L. Cui, F. X. Guan, Y. Gao, N. E. Hedin, L. Zhu, H. Fong, “Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers”, Macromolecules 40, 6283-6290 (2007).
    [34] S. Y. Tsou, H. S. Lin, C. Wang, “Studies on the electrospun Nylon 6 nanofibers from polyelectrolyte solutions 1. Effects of solution concentration and temperature”, Polymer 52, 3127-3136 (2011).
    [35] C. Wang, S. Y. Tsou, H. S. Lin, “Brill transition of nylon-6 in electrospun nanofibers”, Colloid and Polymer Science 290, 1799–1809 (2012).
    [36] A. Barrero, A. M. Gañán-Calvo, J. Dávila, A. Palacio, E. Gómez-González, “Low and high Reynolds number flows inside Taylor cones”, Physical Review E 58, 7309-7314 (1998).
    [37] A. Gupta, B. K. Mishra, P. K. Panigrahi, “Experimental Investigation of Flow Field Inside a Taylor Cone”, EasyChair, (2019).
    [38] A. Gupta, B. K. Mishra, P. K. Panigrahi, “Internal and external hydrodynamics of Taylor cone under constant and alternating voltage actuation”, Physics of Fluids 33, 117118 (2021).
    [39] J. Kim, S. B. Q. Tran, B. Seong, H. Lee, G. Kang, J. H. Ko, D. Byun, “Experimental study on fluid selection for a stable Taylor cone formation via micro-PIV measurement”, Journal of Visualization 23, 449–457 (2020).
    [40] I. Hayati, “Eddies inside a liquid cone stressed by interfacial electrical shear”, Colloids and Surfaces 65, 77-84 (1992).
    [41] O. Lastow, W. Balachandran, “Numerical simulation of electrohydrodynamic (EHD) atomization”, Journal of Electrostatics 64, 850–859 (2006).
    [42] L. K. Lim, J. S. Hua, C. H. Wang, K. A. Smith, “Numerical Simulation of Cone-Jet Formation in Electrohydrodynamic Atomization”, AIChE Journal 57, 57-78 (2011).
    [43] M. A. Herrada, J. M. Lopez-Herrera, A. M. Gañán-Calvo, “Numerical simulation of electrospray in the cone-jet mode”, Physical Review E 86, 026305 (2012).
    [44] A. Najjaran, R. Ebrahimi, M. Rahmanpoor, A. Najjaran, “Numerical Simulation of Electrohydrodynamic(EHD) Atomization in The Cone-jet Mode”, Applied Mechanics and Materials 325, 180-185 (2013).
    [45] H. Dastourani, M. R. Jahannama, A. Eslami-Majd, “A physical insight into electrospray process in cone-jet mode: Role of operating parameters”, International Journal of Heat and Fluid Flow 70, 315–335 (2018).
    [46] A. Melling, “Tracer particles and seeding for particle image velocimetry”, Measurement Science and Technology 8, 1406–1416 (1997).
    [47] M. Hamdi, M. Havet, O. Rouaud, D. Tarlet, “Comparison of different tracers for PIV measurements in EHD airflow”, Experiments in Fluids 55, 1702 (2014).
    [48] 吳紹華,“電紡液柱內微結構與泰勒錐流體流場之研究”,國立成功大學碩士論文 (2021)。
    [49] 鄒世雍,“以電紡絲法製備尼龍奈米纖維及其微結構鑒定”,國立成功大學碩士論文 (2009)。
    [50] 林玄昇,“以電紡絲法製備尼龍6及聚氧化乙烯/尼龍6芯鞘型纖維”,國立成功大學碩士論文 (2012)。
    [51] 謝文馨,“聚左旋乳酸溶液與聚醯胺-6溶液之流變特性”,國立成功大學專題論文 (2007)。

    無法下載圖示 校內:2029-08-22公開
    校外:2029-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE