| 研究生: |
李懿珊 Li, Yi-Shan |
|---|---|
| 論文名稱: |
糖解作用抑制劑檸檬酸可抑制具有高度糖解作用活性的腫瘤細胞生長 Citrate, a Glycolytic Inhibitor, Inhibits the Growth of Cancer Cells with Highly Glycolytic Activity |
| 指導教授: |
張文粲
Chang, Wen-Tsan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 檸檬酸 、瓦氏效應 、癌症治療 、能量代謝 |
| 外文關鍵詞: | Citrate, Warburg effect, Cancer therapy, Energy metabolism |
| 相關次數: | 點閱:221 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
檸檬酸(Citrate)是一種有機弱酸,其普遍存在於蔬果類當中,並且被大量應用在食品工業、化妝品和醫藥上面,其作用非常的廣泛。換言之,檸檬酸具有高度的穩定性與安全性。而在生化方面,檸檬酸也扮演了重要的角色,為檸檬酸循環(TCA cycle)的第一代謝產物,並且也參與了脂肪酸(Fatty acid)的合成。但特別的是,檸檬酸在先前許多研究中被認為是糖解作用(Glycolysis)的抑制劑。在瓦式效應(Warburg effect)中,惡性的腫瘤細胞會傾向將其生長代謝方式,由傳統的檸檬酸循環轉變成糖解作用來快速獲取能量。在實驗室之前的研究裡,我們發現穩定默化檸檬酸合成酶的子宮頸癌細胞株有惡性轉型的現象。這種細胞對於一些抗癌藥物,例如依托泊苷(Etoposide)和放射線治療的抵抗性也提高了。從之前實驗結果發現,限制培養基中葡萄糖的含量可以有效的殺死這個細胞株,暗示著這株細胞株的能量代謝途徑的確已經轉移到糖解作用,因此本研究使用糖解作用抑制劑檸檬酸鈉(Sodium citrate)做為抑制惡性腫瘤的藥物。在本實驗裡面發現檸檬酸鈉可以專一且有效地殺死這株細胞株,另外在實驗室之前建立的穩定默化乳酸脫氫酶乙型(Lactate dehydrogenase B)與穩定默化六碳糖激酶1(Hexokinase 1)的子宮頸癌細胞株,其能量代謝傾向走糖解作用的惡性腫瘤細胞,實驗結果同樣看到抑制效果。相反地,若是將檸檬酸鈉處理在之前實驗室建立的穩定默化乳酸脫氫酶甲型(Lactate dehydrogenase A)與穩定默化六碳糖激酶2(Hexokinase 2)的子宮頸癌細胞株,其能量代謝趨向於走氧化磷酸化(Oxidative phosphorylation),細胞也較不惡性,實驗結果發現這兩種細胞株對於檸檬酸的敏感性較低,暗示著檸檬酸鈉可以專一性殺死較為惡性的細胞。除了處理在實驗室已建立的細胞株外,本實驗也將檸檬酸鈉處理在不同的野生型腫瘤細胞株內,結果發現較為惡性的野生型腫瘤細胞株確實有大量的死亡。透過藥物處理後的西方點墨法發現,糖解作用途徑中的己糖激酶2(Hexokinase 2)和乳酸脫氫酶甲型(LDHA)皆有受到抑制,且從許多文獻中指出,抑制這兩種酵素的表現確實會使惡性的腫瘤細胞造成死亡,因此更加證實檸檬酸鈉會使腫瘤細胞無法進行糖解作用而導致細胞走向細胞凋亡(Apoptosis)。臨床上,檸檬酸鈉與檸檬酸鉀(Potassium citrate)分別扮演著不同功能,然而在本實驗當中,這兩種不同的藥物依然可以達到抑制惡性腫瘤生長的效果,因此,從這個地方可以得知,使惡性腫瘤造成大量死亡的主要是檸檬酸,並非檸檬酸上所攜帶的金屬離子所致。進一步我將檸檬酸處理在動物實驗上,也同樣在高濃度看到了腫瘤抑制效果。綜合以上實驗結果發現,檸檬酸未來可以用來做為一種抗癌藥物,不但成本低廉且穩定性高,而且也可以依造病患的狀況,給予攜帶不同金屬離子的檸檬酸做為治療。
Citrate is an organic weak acid exists in vegetables and fruits. It has been used in food industrial, cosmetic science and biomedicine fields, and is a compound of high stability and safety. Citrate also plays an important role in biochemistry, serving as the first deriviative metabolite in tricaboxylic acid cycle, and a modulator in fatty acid synthesis. Particularly, previous studies indicate that citrate is an inhibitor of glycolysis. Malignant tumor cell has an inclination of shifting its metabolic pathway from traditional TCA cycle to glycolytic pathway, a phenomenon called Warburg effect. In our previous research, we found out that a cervical cancer cell line will undergo malignant transformation after persistent silencing of citrate synthase. This cell line has a higher resistance to Etoposide and radiation treatment, but is much more sensitive to glucose deprivation culture enviornment, suggesting that these cells shift its energy consumption pathway to glycolysis metabolism. In this study I use glycolysis inhibitor, sodium citrate, as an anti-tumor drug. My experiment results suggest that sodium citrate can kill this cell line with high efficiency. This result is also confirmed in treating with stable silencing of Lactate dehydrogenase B or Hexokinase I tumor cell line which are also a kind of malignant tumor cell lines. On the contrary, stable silencing of Lactate dehydrogenase A or Hexokinase II tumor cell line, which uses oxidative phosphorylation as its energy source, shows no such drug sensitivity after sodium citrate treatment. This indicates that sodium citrate can specifically kill these malignant tumor cell lines. In spite of the treatment to our own established cell lines, I also treat sodium citrate with other wild type tumor cell lines, and get the same result. My western data shows that glycolytic enzymes Hexokinase II and LDHA have a lower expression pattern after drug treatment. According to other studies, inhibition of these two enzyme expressions would lead to glycolysis pathway shut down and force cells’apoptosis. Sodium citrate and Potassium citrate play different roles clinically, but have shown the same result in the experiment, suggesting that it is the citrate compound, not the metal ions, that inhibits malignant tumor growth. Followed by previous experiments, we also find out the same result in animal experiments. To summarize the experiment results, we suggest that citrate could be a potential anti-tumor drug with a lower price and highly stability. It is also possible that we can treat the patients with different metal ions compounds according to their condition.
Abu-Hamad, S., Zaid, H., Israelson, A., Nahon, E., and Shoshan-Barmatz, V. (2008). Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. The Journal of biological chemistry 283, 13482-13490.
Anflous-Pharayra, K., Cai, Z.J., and Craigen, W.J. (2007). VDAC1 serves as a mitochondrial binding site for hexokinase in oxidative muscles. Biochimica et biophysica acta 1767, 136-142.
Barker, J., Khan, M.A., and Solomos, T. (1964). Mechanism of the Pasteur Effect. Nature 201, 1126-1127.
Bosch, F.X., Manos, M.M., Munoz, N., Sherman, M., Jansen, A.M., Peto, J., Schiffman, M.H., Moreno, V., Kurman, R., Shah, K.V., et al. (1995). Prevalence of Human Papillomavirus in Cervical-Cancer - a Worldwide Perspective. Journal of the National Cancer Institute 87, 796-802.
Brewer, N.T., and Fazekas, K.I. (2007). Predictors of HPV vaccine acceptability: A theory-informed, systematic review. Prev Med 45, 107-114.
Cairns, R.A., Harris, I.S., and Mak, T.W. (2011). Regulation of cancer cell metabolism. Nature reviews Cancer 11, 85-95.
Chesney, J. (2006). 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current opinion in clinical nutrition and metabolic care 9, 535-539.
Costello, L.C., and Franklin, R.B. (1998). Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. The Prostate 35, 285-296.
DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell metabolism 7, 11-20.
Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer cell 9, 425-434.
Franco, E.L., Duarte-Franco, E., and Ferenczy, A. (2001). Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 164, 1017-1025.
Funes, J.M., Quintero, M., Henderson, S., Martinez, D., Qureshi, U., Westwood, C., Clements, M.O., Bourboulia, D., Pedley, R.B., Moncada, S., et al. (2007). Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proceedings of the National Academy of Sciences of the United States of America 104, 6223-6228.
Futreal, P.A., Liu, Q., Shattuck-Eidens, D., Cochran, C., Harshman, K., Tavtigian, S., Bennett, L.M., Haugen-Strano, A., Swensen, J., Miki, Y., et al. (1994). BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120-122.
Garcia, C.K., Goldstein, J.L., Pathak, R.K., Anderson, R.G.W., and Brown, M.S. (1994). Molecular Characterization of a Membrane Transporter for Lactate, Pyruvate, and Other Monocarboxylates - Implications for the Cori Cycle. Cell 76, 865-873.
Guppy, M., Greiner, E., and Brand, K. (1993). The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. European journal of biochemistry / FEBS 212, 95-99.
Halabe Bucay, A. (2009). Hypothesis proved...citric acid (citrate) does improve cancer: a case of a patient suffering from medullary thyroid cancer. Medical hypotheses 73, 271.
Hendrickson, F.R., Shehata, W.M., and Kirchner, A.B. (1976). Radiation-Therapy for Osseous Metastasis. Int J Radiat Oncol 1, 275-278.
Hillar, M., Lott, V., and Lennox, B. (1975). Correlation of the effects of citric acid cycle metabolites on succinate oxidation by rat liver mitochondria and submitochondrial particles. Journal of bioenergetics 7, 1-16.
Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C.C. (1991). p53 mutations in human cancers. Science 253, 49-53.
Hong, S.H., Choi, Y.S., Cho, H.J., Lee, J.Y., Kim, J.C., Hwang, T.K., and Kim, S.W. (2012). Antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer. Chinese journal of cancer research = Chung-kuo yen cheng yen chiu 24, 124-129.
Icard, P., Poulain, L., and Lincet, H. (2012). Understanding the central role of citrate in the metabolism of cancer cells. Bba-Rev Cancer 1825, 111-116.
Kim, J.H., Kim, E.L., Lee, Y.K., Park, C.B., Kim, B.W., Wang, H.J., Yoon, C.H., Lee, S.J., and Yoon, G. (2011). Decreased lactate dehydrogenase B expression enhances claudin 1-mediated hepatoma cell invasiveness via mitochondrial defects. Experimental cell research 317, 1108-1118.
Kim, J.W., and Dang, C.V. (2005). Multifaceted roles of glycolytic enzymes. Trends in biochemical sciences 30, 142-150.
Korshunov, A., Neben, K., Wrobel, G., Tews, B., Benner, A., Hahn, M., Golanov, A., and Lichter, P. (2003). Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163, 1721-1727.
Krebs, H.D. (1940). The citric acid cycle. Biochem J 34, 460-463.
Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., Royer, R.E., Vander Jagt, D.L., Semenza, G.L., and Dang, C.V. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America 107, 2037-2042.
Lin, C.C., Cheng, T.L., Tsai, W.H., Tsai, H.J., Hu, K.H., Chang, H.C., Yeh, C.W., Chen, Y.C., Liao, C.C., and Chang, W.T. (2012). Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Scientific reports 2.
Love, R.R., Leventhal, H., Easterling, D.V., and Nerenz, D.R. (1989). Side-Effects and Emotional Distress during Cancer-Chemotherapy. Cancer 63, 604-612.
Lu, Y., Zhang, X., Zhang, H., Lan, J., Huang, G., Varin, E., Lincet, H., Poulain, L., and Icard, P. (2011). Citrate induces apoptotic cell death: a promising way to treat gastric carcinoma? Anticancer research 31, 797-805.
Mamede, M., Higashi, T., Kitaichi, M., Ishizu, K., Ishimori, T., Nakamoto, Y., Yanagihara, K., Li, M., Tanaka, F., Wada, H., et al. (2005). [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 7, 369-379.
Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715.
Markert, C.L., Shaklee, J.B., and Whitt, G.S. (1975). Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102-114.
Mathupala, S.P., Heese, C., and Pedersen, P.L. (1997a). Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. The Journal of biological chemistry 272, 22776-22780.
Mathupala, S.P., Ko, Y.H., and Pedersen, P.L. (2009). Hexokinase-2 bound to mitochondria: Cancer's stygian link to the "Warburg effect" and a pivotal target for effective therapy. Seminars in cancer biology 19, 17-24.
Mathupala, S.P., Rempel, A., and Pedersen, P.L. (1997b). Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. Journal of bioenergetics and biomembranes 29, 339-343.
Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50-56.
Muller, F. (2000). The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. Journal of the American Aging Association 23, 227-253.
Munoz, N., and Bosch, F.X. (1996). The causal link between HPV and cervical cancer and its implications for prevention of cervical cancer. Bulletin of the Pan American Health Organization 30, 362-377.
Newsholme, E.A., Crabtree, B., and Ardawi, M.S. (1985). The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Bioscience reports 5, 393-400.
Oesterling, J.E. (1991). Prostate Specific Antigen - a Critical-Assessment of the Most Useful Tumor-Marker for Adenocarcinoma of the Prostate. J Urology 145, 907-923.
Peschiaroli, A., Giacobbe, A., Formosa, A., Markert, E.K., Bongiorno-Borbone, L., Levine, A.J., Candi, E., D'Alessandro, A., Zolla, L., Finazzi Agro, A., et al. (2013). miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene 32, 797-802.
Pfeiffer, T., Schuster, S., and Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504-507.
Polyak, K., and Weinberg, R.A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer 9, 265-273.
Racker, E. (1972). Bioenergetics and the problem of tumor growth. American scientist 60, 56-63.
Ralser, M., Wamelink, M.M., Struys, E.A., Joppich, C., Krobitsch, S., Jakobs, C., and Lehrach, H. (2008). A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth. Proceedings of the National Academy of Sciences of the United States of America 105, 17807-17811.
Rich, P.R. (2003). The molecular machinery of Keilin's respiratory chain. Biochemical Society transactions 31, 1095-1105.
Romano, A.H., and Conway, T. (1996). Evolution of carbohydrate metabolic pathways. Research in microbiology 147, 448-455.
Salani, B., Marini, C., Rio, A.D., Ravera, S., Massollo, M., Orengo, A.M., Amaro, A., Passalacqua, M., Maffioli, S., Pfeffer, U., et al. (2013). Metformin Impairs Glucose Consumption and Survival in Calu-1 Cells by Direct Inhibition of Hexokinase-II. Scientific reports 3, 2070.
Schulz, T.J., Thierbach, R., Voigt, A., Drewes, G., Mietzner, B., Steinberg, P., Pfeiffer, A.F., and Ristow, M. (2006). Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. The Journal of biological chemistry 281, 977-981.
Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A., Dalla-Favera, R., and Dang, C.V. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proceedings of the National Academy of Sciences of the United States of America 94, 6658-6663.
Simbula, G., Columbano, A., Ledda-Columbano, G.M., Sanna, L., Deidda, M., Diana, A., and Pibiri, M. (2007). Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis : an international journal on programmed cell death 12, 113-123.
Taylor, W.M., and Halperin, M.L. (1973). Regulation of pyruvate dehydrogenase in muscle. Inhibition by citrate. The Journal of biological chemistry 248, 6080-6083.
Wang, X., Wang, H.K., McCoy, J.P., Banerjee, N.S., Rader, J.S., Broker, T.R., Meyers, C., Chow, L.T., and Zheng, Z.M. (2009). Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. Rna 15, 637-647.
Warburg, O. (1927). The classification of animal tissues after their metabolism. Biochem Z 184, 484-488.
Wiegand, G., and Remington, S.J. (1986). Citrate synthase: structure, control, and mechanism. Annual review of biophysics and biophysical chemistry 15, 97-117.
Wilson, J.E. (1995). Hexokinases. Reviews of physiology, biochemistry and pharmacology 126, 65-198.
Wilson, J.E. (2003). Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. The Journal of experimental biology 206, 2049-2057.
Wolf, A., Agnihotri, S., Micallef, J., Mukherjee, J., Sabha, N., Cairns, R., Hawkins, C., and Guha, A. (2011). Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. The Journal of experimental medicine 208, 313-326.
Wooster, R., Neuhausen, S.L., Mangion, J., Quirk, Y., Ford, D., Collins, N., Nguyen, K., Seal, S., Tran, T., Averill, D., et al. (1994). Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265, 2088-2090.
Zhang, X., Varin, E., Allouche, S., Lu, Y., Poulain, L., and Icard, P. (2009). Effect of citrate on malignant pleural mesothelioma cells: a synergistic effect with cisplatin. Anticancer research 29, 1249-1254.
Zhukov, N.V., and Tjulandin, S.A. (2008). Targeted therapy in the treatment of solid tumors: Practice contradicts theory. Biochemistry-Moscow+ 73, 605-618.