簡易檢索 / 詳目顯示

研究生: 馬牧輝
Makhraja, Muhammad Anshar
論文名稱: 以第一原理輔助CALPHAD熱力學計算建構 Mo-V 及 Mo-Zr 二元系統之熱力學模型
Ab initio-aided CALPHAD thermodynamic modeling for the Mo-V and Mo-Zr binary systems
指導教授: 林士剛
Lin, Shih-kang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 109
中文關鍵詞: 高熵合金从头计算计算CALPHAD弹性性能
外文關鍵詞: High Entropy Alloys, ab-initio calculation, CALPHAD, elastic properties
相關次數: 點閱:132下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高溫合金是目前使用的材料進行高溫應用。最近,一種新型的合金稱為高熵合金被發現有很大的潛力,以取代高溫合金為原料的高溫應用。調查高熵合金大多由實驗這是耗時且昂貴的完成。在未來,計算方法,設計高熵合金將是非常有用的。而建構一個高階系統,必需先仰賴各低階系統的完成。
    一個眾所周知的計算方法基於密度泛函理論(DFT)來預測材料的性質,從頭算,已經被證明是預測各種材料特性的一大利器。這個理論將利用第一原理計算方法去預測熱力學性值,並且將藉由此方法去增進Mo-V 和 Mo-Zr 的CALPHAD 模型建構。
    Mo-V 和 Mo-Zr 二元系統的熱力學評估已經完成,其實驗結果和文獻中的利用實驗所得相圖的結果相當接近,熱力學評估之參數將被提出到high-order合金系統中,例如高熵合金。Mo-V-Zr 三元系統可藉由評估V-Zr 二元系統來開發。V-Zr二元系統之第一原理計算附於附錄 B,將V-Zr 二元系統和Mo-V以及Mo-Zr 二元系統做結合可以得到Mo-V-Zr 三元系統。此外,利用第一原理彈性性質計算來自MoNbHfTiZr的純元素和二元組成附於附錄C。從彈性性質的計算,可以更深入得到高熵合金實際的應用。第一原理計算成功的預測出體心立方結構和六方最密堆積結構的純Mo, Nb, Hf, Ti和Zr 元素的彈性性質,並比較文獻中的實驗和計算的資料。再者,由Mo, Nb, Hf, Ti 和Zr組成的十種二元合金系統的計算已經完成。

    Superalloys are current used materials for high temperature application. Recently, a new type of alloy called high entropy alloys are found to have a great potential to replace superalloys as material for high temperature application. Investigation on high entropy alloys are mostly done by experiment which is time consuming and costly. In the future, computational method to design High Entropy alloys (HEAs) will be very useful. Computational method need to be done accurately for lower order system before going into high-order alloy system.
    A well-known computational method to predict materials properties, ab initio calculation based on Density Functional Theory (DFT), has been proven to be a great tool for predicting various material properties. This thesis contains ab initio calculation to predict thermodynamic properties. Ab initio thermodynamic properties calculation is applied into Mo-V and Mo-Zr CALPHAD modeling to improve their thermodynamic description.
    Mo, V, and Zr are common added element in refractory-HEAs. The thermodynamic description has been assessed in literature. However, experimental phase diagram data and thermochemical data are rarely available. Therefore, ab initio-aided CALPHAD modeling is employed to reassess the Mo-V and Mo-Zr binary systems.
    Thermodynamic reassessment of Mo-V and Mo-Zr binary systems has been done and the results are closely agreed to the experimental phase diagram in the literature. The assessed parameters are proposed into high-order alloy systems such as HEAs. Furthermore, Mo-V-Zr ternary systems can be developed by assessing V-Zr binary system. Ab initio calculation for V-Zr binary system is presented in the appendix B for the possibility of integrated Mo-V, Mo-Zr, and V-Zr binary systems into Mo-V-Zr ternary systems. Additionally, ab initio elastic properties calculations of pure elements and binary constituents from MoNbHfTiZr HEA are presented in the appendix C. The elastic properties calculations are performed to get some insights into practical application of HEAs. Ab initio calculation successfully predict elastic properties of pure Mo, Nb, Hf, Ti, and Zr In bcc and hcp structure compared with experimental and calculated data from the literature. Furthermore, elastic properties of ten binary alloys from Mo, Nb, Hf, Ti, and Zr in bcc-SQS were calculated.

    Contents Acknowledgements ii 摘要 iii Abstract iv Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 11 1.1 Preface 11 1.2 High Entropy Alloys (HEAs) 13 1.3 Ab initio-aided CALPHAD 19 1.3.1 CALPHAD modeling 19 1.3.2 Ab initio calculation 22 Chapter 2 Literature Review 24 2.1 Mo-V binary system 24 2.2 Mo-Zr binary system 27 Chapter 3 Methodology 30 3.1 CALPHAD thermodynamic modeling 30 3.2 Ab initio calculation 32 Chapter 4 Results and discussion 34 4.1 Mo-V binary system 34 4.1.1 Ab-initio solid solution phase 34 4.1.2 CALPHAD modeling 37 4.2 Mo-Zr binary system 38 4.2.1 Ab-initio solid solution phase 38 4.2.2 Ab initio ordered phase 42 4.2.3 CALPHAD modeling 43 Chapter 5 Summary 48 Chapter 6 Future work 49 References 50 APPENDIX A The input files used in PANDAT 58 A.1 TDB File 58 A.1.1 Mo-V binary system 58 A.1.2 Mo-Zr binary system 60 A.2 POP File 63 A.2.1 Mo-V binary system 63 A.2.2 Mo-Zr binary system 68 APPENDIX B Ab initio-aided CALPHAD modeling of V-Zr binary system 89 B.1 Literature Review 89 B.2 Methodology 91 B.3 Results and Discussion 93 APPENDIX C Ab initio elastic properties of binary alloys from HfMoNbTiZr refractory HEAs 99 C.1 Introduction 99 C.2 Methodology 100 C.3 Result and discussion 103 C.4 Summary 109

    References
    1 R. C. Reed, The superalloys: fundamentals and applications: Cambridge University Press 2006.
    2 R. Bowman. Superalloys: A Primer and History. Available: http://www.tms.org/Meetings/Specialty/Superalloys2000/SuperalloysHistory.html
    3 (2010). Nickel-Based Superalloys: Part Two. Available: http://keytometals.com/page.aspx?ID=CheckArticle&site=ktn&NM=236
    4 G. L. Erickson, et al, "The development and application of CMSX-10," Superalloys 1996, pp. 35-44, 1996.
    5 X. G. Liu, L. Wang, L. H. Lou, and J. Zhang, "Effect of Mo Addition on Microstructural Characteristics in a Re-containing Single Crystal Superalloy," Journal of Materials Science & Technology, vol. 31, pp. 143-147, 2// 2015.
    6 M.-H. Tsai and J.-W. Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, vol. 2, pp. 107-123, 2014/07/03 2014.
    7 J.-W. Yeh, "HIGH-ENTROPY MULTIELEMENT ALLOYS," ed, 2002.
    8 J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004.
    9 B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, "Microstructural development in equiatomic multicomponent alloys," Materials Science and Engineering: A, vol. 375–377, pp. 213-218, 7// 2004.
    10 F. Otto, Y. Yang, H. Bei, and E. P. George, "Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys," Acta Materialia, vol. 61, pp. 2628-2638, 4// 2013.
    11 Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solid-Solution Phase Formation Rules for Multi-component Alloys," Advanced Engineering Materials, vol. 10, pp. 534-538, 2008.
    12 X. Yang and Y. Zhang, "Prediction of high-entropy stabilized solid-solution in multi-component alloys," Materials Chemistry and Physics, vol. 132, pp. 233-238, 2/15/ 2012.
    13 S. Guo, C. Ng, J. Lu, and C. T. Liu, "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys," Journal of Applied Physics, vol. 109, 2011.
    14 M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and C. P. Tu. 2006). Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys. vol. 47(no5), 1395-1401.
    15 C.-W. Tsai, M.-H. Tsai, J.-W. Yeh, and C.-C. Yang, "Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy," Journal of Alloys and Compounds, vol. 490, pp. 160-165, 2/4/ 2010.
    16 O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, "Refractory high-entropy alloys," Intermetallics, vol. 18, pp. 1758-1765, 9// 2010.
    17 O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, "Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys," Intermetallics, vol. 19, pp. 698-706, 5// 2011.
    18 O. N. Senkov and C. F. Woodward, "Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy," Materials Science and Engineering: A, vol. 529, pp. 311-320, 11/25/ 2011.
    19 O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, "Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy," Journal of Alloys and Compounds, vol. 509, pp. 6043-6048, 5/19/ 2011.
    20 O. N. Senkov, J. M. Scott, S. V. Senkova, F. Meisenkothen, D. B. Miracle, and C. F. Woodward, "Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy," Journal of Materials Science, vol. 47, pp. 4062-4074, 2012/05/01 2012.
    21 O. N. Senkov, S. V. Senkova, C. Woodward, and D. B. Miracle, "Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis," Acta Materialia, vol. 61, pp. 1545-1557, 3// 2013.
    22 O. Senkov, F. Zhang, and J. Miller, "Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data," Entropy, vol. 15, pp. 3796-3809, 2013.
    23 X. Yang, Y. Zhang, and P. K. Liaw, "Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys," Procedia Engineering, vol. 36, pp. 292-298, // 2012.
    24 A. J. Zaddach, C. Niu, C. C. Koch, and D. L. Irving, "Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy," JOM, vol. 65, pp. 1780-1789, 2013/12/01 2013.
    25 F. Tian, L. K. Varga, N. Chen, L. Delczeg, and L. Vitos, "Ab initio investigation of high-entropy alloys of 3d elements," Physical Review B, vol. 87, p. 075144, 02/26/ 2013.
    26 F. Zhang, C. Zhang, S. L. Chen, J. Zhu, W. S. Cao, and U. R. Kattner, "An understanding of high entropy alloys from phase diagram calculations," Calphad, vol. 45, pp. 1-10, 6// 2014.
    27 P. J. Spencer, "A brief history of CALPHAD," Calphad, vol. 32, pp. 1-8, 3// 2008.
    28 J. J. V. Laar, Z. Phys. Chem, vol. 63, p. 216, 1908.
    29 H. B. L. Kaufman, "Computer Calculation of Phase Diagrams," Academic Press, New York, 1970.
    30 H. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method: Cambridge University Press, 2007.
    31 Z.-K. Liu, "First-Principles Calculations and CALPHAD Modeling of Thermodynamics," Journal of Phase Equilibria and Diffusion, vol. 30, pp. 517-534, 2009/10/01 2009.
    32 J. G. Lee, Computational Materials Science: An Introduction: Taylor & Francis, 2011.
    33 D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 89-110, 1928.
    34 V. Fock, Z. Phys. Chem, pp. 126-148, 1930.
    35 A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, "Special quasirandom structures," Physical Review Letters, vol. 65, pp. 353-356, 07/16/ 1990.
    36 H. K. Hanlei Zhanga, Jieren Yanga, Dong Huangb, Hai Nanb, Jinshan Lia, "Microstructure evolution and tensile properties of Ti–6.5Al–2Zr–Mo–V alloy processed with thermo hydrogen treatment," Materials Science and Engineering: A, vol. 619, pp. 274-280, 2014.
    37 J. H. Zhiqiang Li, Weijing Li, Like Pan, "Low cycle fatigue behavior of Cr–Mo–V low alloy steel used for railway brake discs," Materials & Design, vol. 56, pp. 146–157, 2014.
    38 Y. V. E. V.V. Baron, E.M. Savitskii, "Structure and Properties of Alloys of the Vanadium-Molybdenum System," Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, pp. 36-40, 1958.
    39 K. N. I. V.V. Baron, E.M. Savitskii, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Met. Topl., pp. 143-149, 1960.
    40 Rudy, "Ternary phase equilibria in transition metal–boron–carbon–silicon systems, Part V compendium of phase diagram data, Technical Report AFML-TR-64-2, Air Force Materials Laboratory, Ohio, 1969," Transition Metal Phase Diagram, 1969.
    41 V. I. V. Yu.A. Kocherzhinsky, O.G. Kulik, "Construction of the melting diagrams of some mo-containing systems and the metastable melting diagram of the CR-C system using DTA-technique up to 3000 K," Thermochimica Acta, vol. 93, pp. 649-652, 1985.
    42 V. G. A. L.I. Erokhin, V.G. Abramova, "Determination of Chemical Potentials and Gibbs Free Energies in Vanadium-Niobium, Vanadium-Molybdenum and Molybdenum-Tungsten Alloys," Diffuz. Protessy Met. , pp. 95-100, 1987.
    43 L. I. Erokhin, "Activities and Activity Coefficients in Vanadium-Niobium, Vanadium-Molybdenum and Molybdenum-Tungsten Alloys" Diffuz. Protessy Met. , pp. 31-36, 1987.
    44 L. I. Erokhin, "Activities and Activity Coefficients in Vanadium-Niobium, Vanadium-Molybdenum and Molybdenum-Tungsten Alloys," Diffuz. Protessy Met., pp. 155-161, 1989.
    45 L. Brewer, Molybdenum: physico-chemical properties of its compounds and alloys: International Atomic Energy Agency, 1980.
    46 F. Zheng, B. B. Argent, and J. F. Smith, "Thermodynamic computation of the Mo-V binary phase diagram," Journal of Phase Equilibria, vol. 20, pp. 370-372, 1999/07/01 1999.
    47 J. F. Smith, "The mo-v system (molybdenum-vanadium)," Journal of Phase Equilibria, vol. 13, pp. 50-53, 1992/02/01 1992.
    48 J. Bratberg and K. Frisk, "A thermodynamic analysis of the Mo-V and Mo-V-C system," Calphad, vol. 26, pp. 459–476, 2002.
    49 A. T. D. R.H. Davies, S.M. Hodson, J.A. Gisby, N.J. Pugh, T.L. Barry, T.G. Chart, ",in: F.H. Hayes (Ed.), MTDATA-The NPL Databank for Metallurgical ThermochemistryThe Institute of Metals, London (1991) User Aspects of Phase Diagrams" 1991.
    50 C. K. Gupta, "Materials in Nuclear Energy Applications," CRC Press, Inc, Boca Raton, FL, vol. II, 1989.
    51 R. E. Smallwood, "TZM Moly Alloy". ASTM special technical publication 849: Refractory metals and their industrial applications: a symposium.: ASTM International., 1984.
    52 D. J. M. R.F. Domagala, M. Hansen, Trans. AIME, vol. 197, pp. 73-79, 1953.
    53 A. C. S. V.N. Svechnikov, Phase Transformation, Nauk. Dumka, Kiev pp. 123-128, 1967.
    54 S. P. Garg and R. J. Ackermann, "The high temperature phase diagrams for zirconium-molybdenum and hafnium-molybdenum," Metallurgical Transactions A, vol. 8, pp. 239-244, 1977/02/01 1977.
    55 J. L. Ham, Trans. ASME, vol. 73, pp. 723-732, 1951.
    56 B. G. P. A.M. Zakharov, Yu.A. Belykh, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall, vol. 5, pp. 126-128, 1970.
    57 S. B. Prima, "Diagramy sostoyaniya v materialoevedenie, Nauk. Dunka, Kiev " pp. 30-37, 1984.
    58 Y. J. Bhatt, L. Kumar, R. V. Patil, G. B. Kale, and S. P. Garg, "Diffusion studies in Hf-Mo, Zr-Mo, Cr-Nb, Cr-Ta and Th-Re systems above 1900 K," Journal of Alloys and Compounds, vol. 302, pp. 177-186, 2000.
    59 D. O. Northwood, "The stability of the β phase in Zr-3wt.%Mo and Zr-3wt.%Mo-1wt.%Al alloys," Journal of The Less-Common Metals, vol. 57, pp. 231-235, 1978.
    60 H. D. K. M. Hansen, D.J. McPherson, Trans. ASM, vol. 44, pp. 518-539, 1952.
    61 O. v. G. O. Kubaschewski, "Zirconium: Physico–Chemical Properties of its Compounds and Alloys," O. Kubaschewski (Ed.) Atomic Energy Review. IAEA, Vienna, Austria (special issue, No. 6), pp. 96-97, 1976.
    62 F. L. Von G. Brauer, Plansee Proceedings 1964 Metallwerk Plansee AG, Reutle/Tirol pp. 340-350, 1965.
    63 S. M. B. G.B. Samsonov, A.A. Rogozinskaya, Izv. Vyssh. Uchebn. Zaved. Tsvetn Metall, vol. 15, pp. 118-122, 1972.
    64 R. K. V.E. Pipitz, Z. Metallkd, vol. 46, p. 3, 1955.
    65 A. V. K. V.V. Petkov, Dokl. Akad. Nauk Ukrain. S (A), vol. 8, pp. 751-753, 1972.
    66 Ö. Rapp, "Superconductivity and lattice parameters in the zirconium-molybdenum, zirconium-tungsten, hafnium-molybdenum and hafnium-tungsten alloy systems," Journal of The Less-Common Metals, vol. 21, pp. 27-44, 1970.
    67 M. Zinkevich and N. Mattern, "Thermodynamic assessment of the Mo-Zr system," Journal of Phase Equilibria, vol. 23, pp. 156-162, 2002/03/01 2002.
    68 R. Jerlerud Pérez and B. Sundman, "Thermodynamic assessment of the Mo–Zr binary phase diagram," Calphad, vol. 27, pp. 253-262, 9// 2003.
    69 H. L. Lukas, E. T. Henig, and B. Zimmermann, "Optimization of phase diagrams by a least squares method using simultaneously different types of data," Calphad, vol. 1, pp. 225-236, // 1977.
    70 M. Hillert, "The compound energy formalism," Journal of Alloys and Compounds, vol. 320, pp. 161-176, 5/24/ 2001.
    71 W. Cao, S. L. Chen, F. Zhang, K. Wu, Y. Yang, Y. A. Chang, et al., "PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation," Calphad, vol. 33, pp. 328-342, 6// 2009.
    72 A. T. Dinsdale, "SGTE data for pure elements," Calphad, vol. 15, pp. 317-425, 10// 1991.
    73 G. Kresse and J. Furthmüller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set," Computational Materials Science, vol. 6, pp. 15-50, 1996.
    74 J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Physical Review Letters, vol. 77, pp. 3865-3868, 10/28/ 1996.
    75 G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method," Physical Review B, vol. 59, pp. 1758-1775, 01/15/ 1999.
    76 H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical Review B, vol. 13, pp. 5188-5192, 06/15/ 1976.
    77 C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, and Z.-K. Liu, "First-principles study of binary bcc alloys using special quasirandom structures," Physical Review B, vol. 69, p. 214202, 06/28/ 2004.
    78 D. Shin, R. Arróyave, Z.-K. Liu, and A. Van de Walle, "Thermodynamic properties of binary hcp solution phases from special quasirandom structures," Physical Review B, vol. 74, p. 024204, 07/14/ 2006.
    79 C. Jiang, "First-principles study of ternary bcc alloys using special quasi-random structures," Acta Materialia, vol. 57, pp. 4716-4726, 9// 2009.
    80 P.J.Spencer, B. S. R.J.Perez, Ed., ed.
    81 X.-Q. Chen, W. Wolf, R. Podloucky, and P. Rogl, "Comment on “Enthalpies of formation of binary Laves phases” [Intermetallics, 10 (2002) 579–595]," Intermetallics, vol. 12, pp. 59-62, 1// 2004.
    82 P. A. Korzhavyi, B. S. R.J.Perez, Ed., ed.
    83 S. V. Meschel, X. Q. Chen, O. J. Kleppa, and P. Nash, "The standard enthalpies of formation of some intermetallic compounds of early 4d and 5d transition metals by high temperature direct synthesis calorimetry," Calphad, vol. 33, pp. 55-62, 3// 2009.
    84 J. T. Williams, "Vanadium–Zirconium alloy system: titanium binary alloys" Tansactions on AIME, vol. 203, pp. 345–350, 1955.
    85 A. Y. W. Rostoker, "A survey of vanadium binary systems," Transactions on ASM, vol. 46, pp. 1136–1167, 1954.
    86 T. d. f. l. m. a. COST507, in: I. Ansara, A.T. Dinsdale, M.H. Rand editors, Luxembourg: Office for Official Publications of the European Communities; 1998, pp. 303-304.
    87 C. Servant, "Thermodynamic assessments of the phase diagrams of the hafnium-vanadium and vanadium-zirconium systems," Journal of Phase Equilibria and Diffusion, vol. 26, pp. 39-49, 2005/02/01 2005.
    88 X.-S. Zhao, G.-H. Yuan, M.-Y. Yao, Q. Yue, and J.-Y. Shen, "First-principles calculations and thermodynamic modeling of the V–Zr system," Calphad, vol. 36, pp. 163-168, 3// 2012.
    89 J. Štrof, J. Pavlů, U. D. Wdowik, J. Buršík, M. Šob, and J. Vřešťál, "Laves phases in the V–Zr system below room temperature: Stability analysis using ab initio results and phase diagram," Calphad, vol. 44, pp. 62-69, 3// 2014.
    90 H. O. T.B. Massalski and J. F. S. (Ed.), "Binary Alloy Phase Diagrams, V–Zr (Vanadium–Zirconium)," ASM International pp. 3528–3531 1990.
    91 Y. Le Page and P. Saxe, "Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress," Physical Review B, vol. 65, p. 104104, 02/13/ 2002.
    92 F. Tasnádi, M. Odén, and I. A. Abrikosov, "Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence," Physical Review B, vol. 85, p. 144112, 04/20/ 2012.
    93 P. V. a. L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. Newbury, OH: ASTM International, 1991.
    94 S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang, S. Ganeshan, et al., "First-principles calculations of pure elements: Equations of state and elastic stiffness constants," Computational Materials Science, vol. 48, pp. 813-826, 6// 2010.
    95 C. J. R. E. S. Fisher, Physical Review B, vol. 135, 1964.
    96 K. H. M. Born, Dynamical Theory of Crystal Lattices: Oxford University Press, 1988.

    下載圖示 校內:2016-06-26公開
    校外:2016-06-26公開
    QR CODE