| 研究生: |
連彩妏 Lien, Tsai-Wen |
|---|---|
| 論文名稱: |
幾丁聚醣,核醣,梔子素與台灣鯛魚鱗粉末混和膜交聯之生醫材料特性研究 Characterization of Biomaterial film of Taiwan Tilapia scale powder cross-linked with Chitosan, Ribose, or Genipin |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 台灣鯛魚鱗粉末 、幾丁聚醣 、核醣 、梔子素 、交聯 |
| 外文關鍵詞: | Taiwan Tilapia scale powder, Chitosan, Ribose, Genipin, cross-link |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討台灣鯛(Taiwan Tilapia)魚鱗粉末之生醫敷膜製備方式及敷膜性質之分析。主要研究利用魚鱗粉末與幾丁聚醣均勻粉混合後,再分別與核醣或梔子素交聯成膜。 由掃描式電子顯微鏡(SEM)微觀其交聯結構;由交聯程度、膨脹率與熱變性溫度(Td)測量其物理性質;以人類腎小管上皮細胞做為細胞增生活性測試。研究結果顯示,最佳化製備魚鱗粉末的條件為:取魚鱗30g以0.01 N 1000 ml的HCl溶液均勻粉碎。實驗時每次取10毫升魚鱗粉粹均質液,再加入不同重量之交聯劑來製膜。實驗發現魚鱗粉末與不同比例的幾丁聚醣的混合膜,再加入核醣或梔子素交聯後,形成的膜擁有較佳的物理特性與細胞增生活性。熱變性溫度試驗,發現在pH11之條件下,以3.15%幾丁聚醣(chitosan)/ 2.36%核醣(ribose)和以3.22%幾丁聚醣(chitosan)/ 0.16%梔子素(genipin)的比例與魚鱗粉末進行交聯後形成的膜有最高的熱變性溫度,分別為97.62 and 98.20 ℃。由SEM觀察發現在pH 7條件下,以8.89%幾丁聚醣(chitosan)/2.22%核醣(ribose)及以0.99%幾丁聚醣(chitosan)/ 0.17%梔子素(genipin)進行交聯所形成的膜具有最好交聯結構,且有大片薄膜狀及較小之孔洞,前者之孔洞平均約18μm,後者約15μm。細胞增生實驗發現在pH9條件下,以0.99%幾丁聚醣(chitosan)/ 0.17%梔子素(genipin) 及在pH8條下,以8.89%幾丁聚醣(chitosan)/2.22%核醣(ribose)比例與魚鱗粉末進行交聯所形成的膜,前者細胞生長速度是未交聯前魚鱗粉末膜的1.89 倍,後者則為4.27倍。因此,使用魚鱗粉末取代由魚鱗萃取出之膠原蛋白來做為生醫敷膜是可行的。
This study is to explore the feasibility of preparing the biomaterial film by using Taiwan Tilapia fish scale powder to cross-link with chitosan and ribose or genipin. The physical properties measured by scanning electron microscopy (SEM), degree of swelling (Swelling ratio), thermal denaturation temperature (Td) were measured. The human kidney proximal tubular epithelial cell line (HK-2) was cultivated on the film to assay the cell growth activity. The optimum condition for prepare the fish scale powder was to grind homogeneously 30g of fish scales in 1000 ml of 0.01N HCl aqueous solution. After mixing homogeneous with various ratios of chitosan, then ribose or genipin in various ratio and different pH value was added to the homogeneous mixture for cross-linkage, followed by lyophilization to make the films. It was found that the film prepared by mixing fish scale powder and chitosan, then cross-linked with genipin or ribose showed better physical properties and cell growth activity. When 3.15% chitosan/ 2.36% ribose and 3.22% chitosan/ 0.16% genipin cross-linked with scale powder under pH 11 condition showed the highest thermal denaturation temperature with 97.62 oC and 98.20 oC, respectively. It was found by using SEM that under pH 7 condition the film prepared by cross-linking with 8.89% chitosan/2.22% ribose and with 0.99% chitosan/ 0.17%genipin showed a typical membrane-like structure and with pore size of 18 μm for the former one and 15 μm for the latter one. The HK-2 cell growth assays found that the films prepared by cross-linking with 0.99% chitosan/0.17% genipin in pH 9 was 1.89 folds higher than that of only fish scale powder film; while cross-linking with 8.89% chitosan/2.22% ribose in pH 8, it was 4.27 folds higher. In this study, we have shown that without extracting the collagen from the scale, by just using the fish scale powder is feasible to prepare the biomaterial film.
1. Sun W, Lin H, Xie H, Chen B, Zhao W, Han Q, et al. Collagen membranes loaded with collagen-binding human PDGF-BB accelerate wound healing in a rabbit dermal ischemic ulcer model. Growth Factors 2007;25:309–18.
2. Schlapp M, Friess W. Collagen/PLGA microparticle composites for local controlled delivery of gentamicin. J Pharm Sci 2003;92:2145–51.
3. Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 2008;63:492–6.
4. Mironov V, Kasyanov V, Markwald RR. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 2008;26:338–44.
5. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers2008;89:338–44
6. Singer, Adam J.; Clark, Richard A.F Massachusetts Medical Society Volume 341(10) 2 September 1999 pp 738-746
7. Richard A.F Clark,MD Basic of Cutaneous wound repair J Dermatol Surg Oncol. 1993:19:693-706
8. ERIK F. YOUNG and EUGENE E. MARCANTONIO.A Novel Subcellular Collagen Organization Process Visualized by Total Internal Reflection Fluorescence Microscopy; September 2007.
9. M. C. Tanaka and M. Shimokomaki;Collagen types in mechanically deboned chicken meat;J. Food Biochem., 20, 215-225, 1996.
10. Yunoki, S., Nagai, N., and Suzuki,T. (2004) Novel biomaterial from reinforced salmon collagen gel prepared by fibril formation and cross-linking. J. Biosci. Bioeng., 98 , 40-47.
11. E. Song, K. S. Kim, T. Chun, H. J. Byun and Y. M. Lee, Biomaterials 27, 2951 (2006).
12. Z. E. Sikorski, D. N. Scott and D. H. Buisson;The role of collagen in the quality and processing of fish;Critical Reviews in Food Science and Nutrition., 20(4), 301-343, 1984.
13. T. Nagai and N. Suzuki;Isolation of collagen from fish waste material-skin bone and fins. Food Chemistry., 68, 277-281, 2000.
14. M. Ogawa, M. W. Moody, R. T. Poriter, J. Bell, M. A. Schexnayder and J. K. Losso;Biochemical properties of black drum and sheepshead seabream skin collagen;Journal of Agricultureal and Food Chemistry., 51, 8088-8092, 2003.
15. S. Mizuta, R. Sakamoto, M. Nishimoto and R. Yoshinaka;Identification and characterization of molecular species of collagen in ordinary muscle and skin of Japanese flounder Paralichthys olivaceus;Food Chemistry., 90, 151-156, 2005.
16. I. Bae, K. Osatomi, A. Yoshida, K. Osako, A. Yamaguchi, K. Hara;Biochemical properties of acid-soluble collagens extracted from the skins of underutilized fishes;Food Chemistry., 108, 49-54, 2008.
17. L. H. Wang, B. Yang, R. Wang, X. Q. Du;Extraction of pepsin-soluble collagen from grass carp (Ctenopharyngodon idella) skin using an artificial neural network;Food Chemistry., 111, 683-686, 2008.
18. L. Wang, X. X. An, F. M. Yang, Z. H. Xin, L. Y. Zhao, Q. H. Hu;Isolation and characterisation of collagens from the skin, scale and bone of deep-sea redfish (Sebastes mentella);Food Chemistry., 108, 616-623, 2008.
19. T. Ikoma, H. Kobayashi, J. Tanaka, D. Walsh and S. Mann;Physical properties of typeⅠ collagen extracted from fish scales of Pagrus major and Oreochromis niloticas;International Journal of Biological Macromolecules., 32, 199-204, 2003.
20. M .Ogawa, M. W. Moody, J. Bell and R. J. Portier;Biochemical properties of bone and scale isolated from the subtropical fish black drum(pogonia cromis) and sheepshead seabream (Archosargus probatocephalus);Food Chemistry., 88, 495-501, 2004.
21. T. Nagai, M. Izumi and M. Ishii;Fish scale collagen preparation and partial characterization;International Journal of Food Science and Technology., 39,293-344, 2004.
22. A. Rochdi, L. Foucat and J. P. Renou, Biopolymers 50, 690 (1999).
23. T. V. Burjanadze, Biopolymers 53, 523 (2000).
24. T. Ikoma, H. Kobayashi, J. Tanaka, D.Walsh and S. Mann, Int. J. Biol. Macromol. 32, 199 (2003).
25. Kadler, k.,1994 Extracellular matrix 1: fibril-forming collagens.Protein profile5(1)
26. Nimni, M. E., Collagen Vol.I, CRC Press, Boca Raton, Florida, 1988.
27. Lubert, S., Biochemistry, Freeman, New York, 1988.
28. Zeeman, R., Dijkstra, P. J., Wachem, P. B. van., Luynb, M. J. A.van.,Hendriksc, M., Cahalanc, P. T., Feijena, J., “Successive epoxy and carbodiimide cross-linking of dermal sheep collagen, ” Biomaterials,20,921-931, 1999.
29.Myllyharju, J., and Kivirikko, K. I. ( 2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet., 20 , 33 - 43.
30. Shigemasa Y, Minami S, “Application of chitin and chitosan for biomaterials”, 13, 383, 1995
31. Kurita K, “Chemistry and application of chitin and chitosan”,polymer degradation and stability, 59, 117, 1998
32. Chatelet C, Damour O, Domard A, “Influence of the degree of acetylation on some Biological properties of chitosa films ”,Biomaterials,22, 261, 2001
33. Ge J et. al., “The effect of structure on pervaporation of chitosan memberane”, J Member Sci, 165, 75, 2000
34. Chandy T, Sharma CP, “Chitosan as a biomaterial”, Biomat, Art Cell,Art Org, 18, 1, 1990
35. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Eng 2001;7: 203–10.
36. Silva SS, Motta A, Rodrigues MT, Pinheiro AFM, Gomes ME, Mano JF, Reis RL, Migliaresi C. Novel genipin-cross-linked chitosan/ silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 2008;9:2764–2774.
37. Malafaya PB, Santos TC, Van Griensven M, Reis RL. Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials 2008;29:3914–3926.
38.Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 2002;124:214–22.
39.Osborne CS, Barbenel JC, Smith D, Savakis M, Grant MH. Investigation into the tensile properties of collagen/chondroitin-6-sulphate gels: the effect of crosslinking agents and diamines. Med Biol Eng Comput 1998;36:129–34.
40.Daamen WF, van Moerkerk HT, Hafmans T, Buttafoco L, Poot AA,Veerkamp JH, et al. Preparation and evaluation of molecularly-defined collagen–elastin–glycosaminoglycan scaffolds for tissue engineering.Biomaterials 2003;24:4001-9.
41. Chapuis JF, Agache P. A new technique to study the mechanical properties of collagen lattices. J Biomech 1992;25:115–20.
42. Murayama, Y., Satoh, S., Oka, T., Imanishi. J., and Noishiki, Y.,“Reduction of the antigenicity and immunogenicity of xenografts by a new cross-linking reagent,”Trans. Am. Soc. Artif. Intern. Organ, 34, 546-549,1988.
43. Nimni, M. E., Cheung, D., Strates, B.,Odama, M. K., Sheikh, K., “Bioprosthesis derived from cross-linked and chemically modified collagenous tissues,” Nimni, M.E.ed. Collagen, Biotechnology.Florida, CRC Press, Inc., 3, 1-37, 1988.
44. Cheung DT, Nimni ME. Mechanisms of crosslinking of proteins by glutaraldehyde II. Reaction with monomeric and polymeric collagen. Connect Tissue Res 1982;10:201–6.
45. Mana F, Dentini M, Desideri P, et al. Comparative chemical evaluation of two commercially available derivates of hyaluronic acid (Hylaforms from rooster combs and Resylanes from streptococcus) used for soft tissue augmentation. J Eur Acad Dermatol Venereol 1999;113:183–92.
46. Powell HM, Boyce ST. EDC crosslinking improves skin substitute strength and stability. Biomaterials 2006;27:5821–7.
47. Lee CR, Grodzinsky AJ, Spector M. The effects of crosslinking of collagen–glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 2001;22:3145–54.
48. Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Eng 2001;7:203–10.
49. Cummings CL, Gawlitta D, Nerem RM, Stegemann JP. Properties of Engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures.Biomaterials 2004;25:3699–706.
50. MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP.Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 2005;74A:489–96.
51. Ma L, Gao CY, Mao ZW, Zhou J, Shen JC, Hu XQ, Han CM. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003;24:4833–4841.
52. Weadock KS, Miller EJ, Bellincampi LD, Zawadsky JP, Dunn MG.Physical crosslinking of collagen fibers: Comparison of ultravioletirradiation and dehydrothermal treatment. J Biomed Mater Res2004;29:1373–1379.
53. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicityof collagen. J Biomed Mater Res B Appl Biomater 2004;71:343–354.
54. Liu BC, Harrell R, Davis RH, Dresden MH, Spira M. The effectof
gamma-irradiation on injectable human amnion collagen.J Biomed Mater Res 1989;23:833–844.
55. Zeeman, R., Dijkstra, P. J., Wachem, P. B. van., Luynb, M. J. A. van., Hendriksc, M., Cahalanc, P. T., Feijena, J., “Successive epoxy and carbodiimide cross-linking of dermal sheep collagen, ” Biomaterials,20, 921-931, 1999.
56.Daamen WF, van Moerkerk HT, Hafmans T, Buttafoco L, Poot AA, Veerkamp JH, et al. Preparation and evaluation of molecularly-defined collagen–elastin–glycosaminoglycan scaffolds for tissue engineering. Biomaterials 2003;24:4001–9.
57.Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res 2002;61:121–30.
58.Kiernan JA. Formaldehyde, formalin, paraformaldehyde and glutaraldehyde: what they are and what they do? Microsc Today 2000:8–12.
59. MacDonald RA, Laurenzi BF, Viswanathan G, Ajayan PM, Stegemann JP.Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res A 2005;74A:489–96.
60. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, et al. PEG stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials 2008;29:3960–72.
61. Huang-Lee LL, Cheung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res 1990;24:1185–201.
62. Chiono V, Pulieri E, Vozzi G, Ciardelli G, Ahluwalia A, Giusti P.Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J Mater Sci Mater Med 2008;19:889–898.
63. Yuan Y, Chesnutt BM, Utturkar G, Haggard WO, Yang Y, Ong JL,Bumgardner JD. The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym 2007; 68:561–567.
64. Huang LLH, Sung HW, Tsai CC, Huang DM. Biocompatibility study of a biological tissue fixed with a naturally occurring crosslinking reagent. J Biomed Mater Res 1998;42:568–576.
65. Liang HC, Chang WH, Lin KJ, Sung HW. Genipin-crosslinked gelatin microspheres as a drug carrier for intramuscular administration: In vitro and in vivo studies. J Biomed Mater Res A 2003;65: 271–282.
66. Mi FL, Tan YC, Liang HF, Sung HW. In vivo biocompatibility and Degradability of a novel injectable-chitosan-based implant. Biomaterials 2002;23:181–191.
67. Osborne CS, Barbenel JC, Smith D, Savakis M, Grant MH. Investigation into the tensile properties of collagen/chondroitin-6-sulphate gels: the effect of crosslinking agents and diamines. Med Biol Eng Comput 1998;
36:129–34.
68. Powell HM, Boyce ST. EDC crosslinking improves skin substitute strength and stability. Biomaterials 2006;27:5821–7.
69. Bailey AJ, Paul RG, Knott L. Mechanism of maturation and ageing of collagen. Mech Ageing Dev 1998;106:1–56.
70. Tanaka S, Avigad G, Eikenberry EF, Brodsky B. Isolation and partial characterization of collagen chains dimerized by sugarderived cross-links. J Biol Chem 1988;263:17650–7.)
71. Allen J. Bailey , Robert Gordon Paul, Lynda Knott;Mechanisms of maturation and ageing of collagen;Mechanisms of Ageing and Development,106,1-56,1998
72. 梁義林,以天然交聯劑(Genipin)交聯生物組織材料最適化條件及其穩
定性的探討,碩士論文,國立中央大學,第二章28-46,1999。
73.賴志行,魚鱗膠原蛋白之萃取及其酵素水解物抗氧化性與角質細胞增
生效果之探討, 國立台灣海洋大學食品研究所,2006.
74.Lu Y,Deng G,Miao F,Li Z.;Metal ion interactions with sugars. The crystal structure and FT-IR study of the NdCl3-ribose complex.;Carbohydr Res ; 338:2913-2919,2003
75. Fujikawa, S.; Fukui, Y.; Koga, K. Tetrahedron Letters1987, 28, 4699.76. Fujikawa, S.; Nakamura, S.; Koga, K. Agric Biol Chem 1988, 52, 869.
校內:2014-08-26公開