| 研究生: |
高立涵 Kao, Li-Han |
|---|---|
| 論文名稱: |
具抗反射層及干涉結構之氧化釩熱阻式微感測器特性研究 Performance Investigation of VOx-Based Microbolometers with Anti-Reflection Layer and Interferometric |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 熱阻式感測器 、干涉結構 、紅外線吸收層 、抗反射層 、響應度 、溫度電阻係數 |
| 外文關鍵詞: | Absorption layer, Interferometric, Anti-reflection layer, Responsivity, Microbolometers, VOx |
| 相關次數: | 點閱:82 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗於氧化釩熱阻式微感測器中設計金屬吸收層搭配適當空腔厚度與反射鏡使其形成建設性干涉之效果,增加對紅外線之吸收率,另外金屬吸收層上方再加入抗反射層增加元件表面粗糙度,增加紅外線的入射光量,以提升元件響應度等特性。元件製作前首先利用理論模型模擬出最佳條件為使用鉻金屬為金屬吸收層,厚度為25 nm,犧牲層空腔厚度為2.6 μm,鋁反射鏡為300 nm,可使入射紅外線與經反射鏡反射之紅外線達到建設性干涉,使紅外線吸收率大幅提升,後續製程將以面型加工方式進行元件製作,並分別製作無金屬吸收層與抗反射層(條件一)、具金屬吸收層無抗反射層(條件二)及具金屬吸收層與抗反射層(條件三)等三種不同條件且感測面積為17 μm x17 μm氧化釩熱阻式微感測器元件進行特性分析比較。元件量測特性結果顯示,輸入1 μA,遮光器頻率0 Hz,條件一元件響應度為325.21 kV/W、條件二元件響應度為568.19 kV/W及條件三元件響應度為592.17 kV/W,條件二、三之元件響應度皆比條件一之元件響應度分別增加74.71%與82.09%,但此三種元件之等效熱導與熱時間常數和室溫電阻皆無太大差異,表示此三種參數不是影響響應度提升之主要原因,接續利用以上分析之數據代入響應度公式計算紅外線吸收率,條件一元件紅外線吸收率為36.81%、條件二元件紅外線吸收率為65.24%及條件三元件紅外線吸收率為68.36%,由結果可證明增加紅外線吸收率可有效提升響應度,而利用金屬吸收層搭配干涉結構可大幅提升紅外線吸收率以達到提升響應度之效果,另一方面增加抗反射層之效果相對於金屬吸收層對紅外線提升不是很多,故響應度提升也不是很明顯;最後分析三種元件之等效雜訊功率與檢測度,條件一、條件二及條件三之三種元件等效雜訊功率分別為8.82×10^-10 W、4.14×10^-10 W及4.04×10^-10 W,檢測度分別為6.09×10^7 cmHz^0.5W^-1、1.29×10^8 cmHz^0.5W^-1及1.33×10^8 cmHz^0.5W^-1,可以看出有較低的等效雜訊功率和較高的檢測度,亦是由於元件對紅外線吸收率的提升使得響應度提升所導致,而增加抗反射層亦可以少量的降低雜訊和增加檢測度,由結果可以再次證實隨著增加吸收層與抗反射層使得紅外線吸收率提升,使得元件有較佳之特性。
In this study, the floating-type VOx microbolometers which included the constructive interference structure and the antireflection layer were constructed and then analyzed their characteristics. The thermal loss from the Si substrate were reduced by the floating-type structure using face-micromachining technique. At the input current of 1 μA, the thermal time constant, responsivity, thermal conductance, NEP and detectivity was 4.38 ms, 592.17 kV/W, 6.28×10^-8 W/K, 4.04×10^-10 W and 1.33×10^8 cmHz^0.5W^-1 respectively. The IR absorbance of the floating-type VOx microbolometers with the absorption layer and the anti-reflection layer compared with the micrbolometers without the absorption layer and the anti-reflection layer was increased from 36.81% to 68.36%. The results indicated that the constructive interference structure and antireflection layer could enhance the responsivity of microbolometers. Furthermore, the responsivity of the microbolometers were enhanced by IR absorbance.
第一章
[1] M. S. Lopez, A. Cuadrado, N. Llombart and J. Alda, “Antenna array connections for efficient performance of distributed microbolometers in the IR,” Opt. Express, vol. 21, pp. 10867-10877, 2013.
[2] A. Rogalski, “Infrared thermal detectors versus photon detectors: I. pixel performance,” Proc. SPIE, vol. 3182, pp. 14-25, 1997.
[3] C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Tech. A,, vol. 27, pp. 956-961, 2009.
[4] S. Bauer, S. B. Gogonea, W. Becker, R. Fettig, B. Ploss, W. Ruppel and W. v. Münch, “Thin metal film as absorber for infrared sensors,” Sens. Actuator. A Phys., vol. 37–38, pp. 497-501, 1993.
第二章
[1] M. H. Lee, R. Guo and A. S. Bhalla, “Pyroelectric Sensors,” J. Electroceram., vol. 2, pp. 229-242, 1998.
[2] C. H. Chen, X. J. Yi, X. R. Zhao and B. F. Xiong, “Characterizations of VO2-based uncooled microbolometer linear array,” Sens. Actuator. A, vol. 90, pp. 212-214, 2001.
[3] R. K. Bhan, R. S. Saxena, C. R. Jalwania and S.K. Lomash, “Uncooled infrared microbolometer arrays and their characterisation techniques,” Def. Sci. J., vol. 59, pp. 580-589, 2009.
[4] Q. Cheng, “Design of dual-band uncooled infrared microbolometer,” IEEE Sens. J., vol. 11, pp. 167-175, 2011.
[5] R. H. Chen, Y. L. Jiang and B. Z. Li, “Influence of post-annealing on resistivity of VOx thin film,” IEEE Electron device letters, vol. 35, pp. 780-782, 2014.
[6] G. Li, N. Yuan, J. Li and X. Chen, “Thermal simulation of micromachined bridge and self-heating for uncooled VO2 infrared microbolometer,” Sens. Actuator. A Phys., vol. 126, pp. 430-435, 2006.
[7] P. Eriksson, J. Y. Andersson and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” J. Microelectromech. Syst., vol. 6, pp. 55-61, 1997.
[8] H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee and S. G. Kim, “A high fill-factor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Trans. Electron Devices, vol. 46, pp. 1489-1491, 1999.
[9] J. E. Ralph, “A positive temperature coefficient thermistor bolometer,” Inf. Phys., vol. 22, pp. 245-249, 1982.
[10] H. B. Shin, J. Saint, M. Y. Lee, N. J. Podraza and T. N. Jackson, “Electrical properties of plasma enhanced chemical vapor deposition a-Si:H and a-Si1-xCx:H for microbolometer applications,” J. Appl. Phys., vol. 114, pp. 183705-1-183705-6, 2013
[11] C. Chen, X. Yi, J. Zhang and B. Xiong, “Micromachined uncooled IR bolometer linear array using VO2 thin films,” Int. J. Inf. Millimeter Waves, vol. 22, pp. 53-58, 2001.
[12] N. Fieldhouse, S. M. Pursel, M. W. Horn and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering,” J. Phys. D: Appl. Phys., vol. 42, pp. 195108-1-195108-6, 2009.
[13] J. S. Shie and P. K. Weng, “Design considerations of metal-film bolometer with iilicromachined floating membrane,” Sens. Actuator. A-Phys., vol. 33, pp. 183-189, 1991.
[14] N. Shen, J. Yu and Z. Tang, “An uncooled infrared microbolometer array for low-cost applications,” IEEE Photonic. Technol. Lett., vol. 27, pp. 1247-1249, 2015.
[15] W. G. Baer, T. Hull, K. D. Wise, K. Najafi and K. D. Wise, “A multiplexed silicon infrared thermal imager,” IEEE International Solid-State Circuits Conference, vol. 91, pp. 631-634, 1991.
[16] F. Niklaus, “MEMS-Based Uncooled Infrared Bolometer Arrays–A Review,” Proc. of SPIE, vol. 6836, pp. 68360D-1-68360D-15, 2017.
[17] A. L. Pergament, “Metal-insulator transition temperatures and excitonic phases in vanadium oxides,” ISRN Condensed Matter Phys., vol. 2011, pp. 1-5, 2011.
[18] Schwingenschlögl, Udo and V. Eyert, “The vanadium Magnéli phases VnO2n-1,” Annalen der physik, vol. 13, pp. 475-510, 2004.
[19] H. Katzke, P. Tolédano and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B, vol. 68, pp. 024109-1-024109-7, 2003.
[20] 陳冠中,「二氧化釩粉末之製備及其性質研究」,國立成功大學材料科學及工程系碩士論文,1996。
[21] A. A. Akande, K. E. Rammutla, T. Moyo, S. E. Osman, S. S. Nkosi, C. J. Jafta and B. W. Mwakikuga, “Magnetism variations and susceptibility hysteresis at the metal-insulator phase transition temperature of VO2 in a composite film containing vanadium and tungsten oxides,” J. Magn. Magn. Mater., vol. 375, pp. 1-9, 2015.
[22] B. V. Bilzen, P. Homm, L. Dillemans, C. Y. Su, M. Menghini, M. Sousa, C. Marchiori, L. Zhang, J. w. Seo, J. W. Seo and J. P. Locquet, “Production of VO2 thin films through post-deposition annealing of V2O3 and VOx films,” The Solid Films, vol. 591, pp. 143-148, 2015.
[23] S. Surnev, M. G. Ramsey and F. P. Netzer, “Vanadium oxide surface studies,” Prog. Surf. Sci., vol. 73, pp. 117-165, 2003.
[24] A. Subrahmanyam, Y. B. K. Reddy and C. L. Nagendra, “Nano-vanadium oxide thin films in mixed phase for microbolometer applications,” J. Phys. D: Appl. Phys., vol. 41, pp. 195108-1-195108-6, 2008.
[25] Y. Q. Lv, M. Hu, M. Wu and Z. Liu, “Preparation of vanadium oxide thin films with high temperature coefficient of resistance by facing targets d.c. reactive sputtering and annealing process,” Surf. Coat. Tech., vol. 201, pp. 4969-4972, 2007.
[26] M. S. B. d. Castro, C. L. Ferreia and R. R. d. Avillez, “Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature,” Inf. Phys. Tech., vol. 60, pp. 103-107, 2013.
[27] Y. H. Han, I. H. Choi and H. K. Kang, “Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films, vol. 425, pp. 260-264, 2003.
[28] H. L. M. Chang, H. You, J. Guo and D.J. Lain, “Epitaxial TiO2 and VO2 films prepared by MOCVD,” Appl. Surf. Sci., vol. 48-49, pp. 12-18, 1991.
[29] D. H. Kim and H. S. Kwok, “Pulsed laser deposition of VO2 thin films,” Appl. Phys. Lett., vol. 65, pp. 3188-3190, 1994.
[30] R. H. Chen, Y. L. Jiang and B. Z. Li, “Influence of post-annealing on resistivity of VOx thin film,” IEEE Electron Device Lett., vol. 35, pp. 780-782, 2014.
[31] Y. H. Han, I. H. Choi and H. K. Kang, “Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers,” Thin Solid Films, vol. 425, pp. 260-264, 2003.
[32] G. Chiarello, R. Barberi, A. Amoddeo, L. S. Caputi and E. Colavita , “ XPS and AFM characterization of a vanadium oxide film on TiO2(100) surface,” Appl. Surf. Sci., vol. 99, pp. 15-19, 1996.
[33] N. S. Le, “Comparison of VOx thin films fabricated on fused quartz and SiO2/Si substrates by metal organic decomposition,” Jpn. J. Appl. Phys., vol. 53, pp. 075502-1-075502-4, 2014.
[34] M. A. Dem’yanenko, B. I. Fomin, V. N. Ovsyuk, I. V. Marchishin, I. O. Parm, L. L. Vasil’ieva and V. V. Shashkin, “Uncooled 160×120 microbolometer IR FPA based on sol-gel VOx,” Inf. Photoelectron., vol. 5957, pp. 59571R-1-59571R-8, 2005.
[35] D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer and M. A. El Khakani, “Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VOx thin films,” Appl. Phys. Lett., vol. 87, pp. 051910-1-051910-3, 2005.
[36] H. K. Kang, Y. H. Han, H. J. Shin, S. Moon and T. H. Kim, “Enhanced infrared detection characteristics of VOx films prepared using alternating V2O5 and V layers,” J. Vac. Sci. Tech. B, vol. 21, pp. 1027-1031, 2003.
[37] D. H. Kim and H. S. Kwok, “Pulsed laser deposition of VO2 thin film,” Appl. Phys., vol. 65, pp. 3188-3190, 1994.
[38] R. T. R. Kumar, B. Karunagaran, D. Mangalaraj, S. K. Narayandass, P. Manoravi, M. Joseph and V. gopal, “Room temperature deposited vanadium oxide thin films for uncooled infrared detectors,” Mater. Research Bulletin, vol.38, pp. 1234-1240, 2003.
[39] C. H. Chen, X. J. Yi, J. Zhang and X. R. Zhao, “Linear uncooled microbolometer array based on VOx thin films,” Inf. Phys. Tech., vol. 42, pp. 87-90, 2001.
[40] R. A. Wood, “Uncooled microbolometer infrared sensor arrays”, Inf. Detectors and Emitters:Mater. Devices, pp. 149-175, 2001.
[41] S. Bauer, S. B. Gogonea, W. Becker, R. Fettig, B. Ploss and W. Ruppel, “Thin metal films as absorbers for infrared sensors,” Sens. and Actuator. A: Phys., vol. 37-38, pp. 497-501, 1993.
[42] C. Hilsum, “Infrared absorption of thin metal films,” J. Opt. Soc. Amer., vol. 44, pp. 188-191, 1954.
[43] F. Alves, A. Karamitros, D. Grbovic, B. Kearney and G. Karunasiri, “Highly absorbing nano-scale metal films for terahertz applications,” Opt. Eng., vol. 51, pp. 063801-1-063801-6, 2012.
[44] B. Harbecke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys., vol. 39, pp. 165-170, 1986.
[45] G. Gerlach, “Bio and nano packaging techniques for electron devices,” Springer, 2012.
[46] D. Lienhard, F. Heepmann and B. Ploss, “Thin nickel films as absorbers in pyroelectric sensor arrays,” Microelectron. Eng., vol. 29, pp. 101-104, 1995.
[47] J. D. Rancourt, “Optical thin films: user handbook,” SPIE Press, Bellingham, 1996.
[48] M. Born, E. Wolf and A. B. Bhatia, “Principles of optics,” 7th, Cambridge university, 1999.
[49] P. A. Silberg, “Infrared absorption of three-layer films”, J. Opt. Soc. Amer., vol. 47, pp. 575-578, 1957.
[50] K. C. Liddiard, “Application of interferometric enhancement to self-absorbing thin film thermal IR detectors,” Inf. Phys., vol. 34, pp. 319-387, 1993.
[51] H. S. Momose, T. Ohguro, K. Kojima, S. i. Nakamura and Y. Toyoshima, “Thermal stability of Pt/Cr and Pt/Cr2O3 thin-film layers on a SiNx/Si substrate for thermal sensor applications,” IEEE Trans. Electron Devices, vol. 50, pp. 1001-1008, 2003.
[52] B. Liu, Z. Lv and Z. Li, “A surface micromachining process utilizing dual metal sacrificial Layer for fabrication of RF MEMS switch,” IEEE Nano/Micro Eng. Mol. Syst., pp. 620-623, 2010.
[53] R. T. Howe, “Surface micromachining for microsensors and microactuators,” J. Vac. Sci. Technol. B, Vol. 6, pp. 1809-1813, 1988.
[54] Z. Cui and R. A. Lawes, “A new sacrificial layer process for the fabrication of micromechanical systems,” J. Micromech. Microeng. Vol. 7, pp. 128-130, 1997.
[55] A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French and P. M. Sarro, “Polyimide sacrificial layer and novel materials for post-processing surface micromachining,” J. Micromech. Microeng. Vol.12, pp. 385-389, 2002.
[56] J. M. Bustillo, R. T. Howe and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” IEEE, vol. 86, pp. 1552-1574, 1998.
[57] A. Hierlemann and H. Baltes, “CMOS-based chemical microsensors,” Analyst, vol. 128, pp. 15-28, 2003.
[58] N. C. Anh, H. J. Shin and K. T. Kim, “Characterization of uncooled bolometer with vanadium tungsten oxide infrared-active layer,” J. Korean Phys. Soc., vol. 45, pp. 921-923, 2004.
第四章
[1] G. Turban and M. Rapeaux, “Dry etching of polyimide in O2-CF4 and O2-SF6 plasmas,” J. Electrochem. Soc., vol. 130, pp. 2231-2236, 1983.
[2] S. H. Chen, J. J. Lai, J. Dai, H. Ma, H. C. Wang and X. J. Yi, “Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method,” Opt. Express, vol. 17, pp. 24153-24161, 2009.
[3] P. Eriksson, J. Y. Andersson and G. Stemme, “Thermal characterization of surface-micromachined silicon nitride membranes for thermal infrared detectors,” Microelectromech. Syst., vol. 6, pp. 55-61, 1997.
校內:2022-08-16公開