| 研究生: |
王水鐸 Shui-To, Wang |
|---|---|
| 論文名稱: |
應用破壞能量於冷鍛可成形性評估
與多道次冷打頭模具設計最佳化之研究 Studies on Forgeability Evaluation and Die Design Optimization Using Fracture Energy in Multi-Stage Cold Heading |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 比能量消耗 、成形極限圖 、多道次冷打頭 、田口設計法 |
| 外文關鍵詞: | specific energy consumption, Taguchi method, multi-stage cold heading, forming limit diagram |
| 相關次數: | 點閱:86 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在產業界冷鍛模具設計普遍地依賴實務法則, 主要以高度減縮比來定義胚料成形極限, 做為判斷鍛件是否產生表面破裂的依據, 然而這些實務法則並無法有效地完成模具設計評估工作。因此如何有效評估胚料的冷鍛可成形性與準確地預測其成形極限是有效地進行冷鍛模具設計之關鍵。
大多數文獻係應用線性應變路徑所建構之成形極限圖(Forming Limit Diagram, FLD) 來進行冷鍛成形極限的評估, 而無法有效預估非線性應變路徑多道次冷鍛之成形極限。本文提出「比能量消耗」新觀念, 採用圓柱鍛粗模擬與實驗, 結合有限單元法模擬分析, 以獲得適用性最佳之延性破壞準則, 並獲知胚料成形極限受到胚料尺寸比與定剪摩擦因子之影響。採用四種不同型式幾何設計胚料之鍛壓模擬與實驗, 以了解冷鍛可成形性受胚料幾何之效應。
由於極限應變無法建立模具設計最佳化所需要之品質目標函數, 本文以具有過程函數特性之「比能量消耗」做為設計參數最佳化所需要之品質特性, 在胚料最低比能量消耗條件下, 採用田口設計法(Taguchi method), 分析設計參數之影響權重, 得到設計參數之最佳組合方案, 以建立多道次冷打頭模具幾何與道次設計的最佳化, 並以實驗驗證其合理性。
In industry, the forging die design depends mainly on the experiences. The height-reduction of the billets is often adopted to define the forming limit and mainly taken as the basis for the forging design. These technical approaches can not evaluate die design effectively and efficiently. Therefore, to evaluate the billet forgeability and to predict the forming limits accurately are the indispensable tasks for the die design in cold forging.
The forming limit diagrams (FLD), which are constructed by the linear strain paths and often used to study for forgeability evaluation in most literatures, can not afford to predict accurately the forming limits of the multi-stage nonlinear forging.
In this paper, the notion of specific energy consumption is proposed to obtain the effects of the forming limits influenced by the specimen aspect ratio and constant shear friction factor. Using the cylinder upsetting, the FEM simulations and tests are performed to find the most appropriate ductile energy criterion. Four types of geometry design of billet are adopted to study the effects of the forgeability on the process parameters and to develop the testing model and the measuring method for predict the forming limit of the billets with various forgeability.
Since the limit strains can not be constructed as the objective function needed by the die design optimization, the specific energy consumption, having the path function property, is taken as the quality characteristics needed for the design parameter optimization. Using the Taguchi method and assuming the minimum specific energy consumption, the most appropriate design parameters combination of die design is successfully obtained, verified by the experimental test, to accomplish the die design optimization of multi-stage cold heading.
1.Freudenthal, A.M., “The Inelastic Behaviour of Engineering Materials and
Structure”, John Wiley, (1950).
2.Cockcroft, M.G. and D.J. Latham, “Ductility and Workability of Metals”, J.
Inst. Metals, Vol. 96, pp.33-39, (1968).
3.Brozzo, P., B. Deluca and R. Rendina, “A New Method for the Prediction of
Formability Limits in Metal Sheets, Sheet Metal Forming and Formability”,
Proceeding of the Seventh Biennial Conference of the International Deep
Drawing Research Group, (1972).
4.Atkins, A.G., “Possible Explanation for Unexpected Departures in
Hydrostatic Tension-Fracture Strain Relation”, Metal Science, pp.81-83,
(1981).
5.Atkins, A.G, “Fracture in Forming”, Journal of Materials Processing
Technology, vol. 56, pp.609-618, (1996).
6.McClintock, F.A., “A Criterion for Ductile Fracture by the Growth of
Holes”, Transaction ASME J. Applied Mech., pp.363-371, (1968).
7.Thmoson, P.F., “Tensile Plastic Instability and Ductile Fracture Criteria
in Uniaxial Compression Tests”, Int. J. Mech. Sci., Vol. 11, pp.187-198,
(1969).
8.Oyane, M., T. Sato, K. Okimoto and S. Shima, “Criteria for Ductile Fracture
and their Application”, Journal of Mechanical Working Technology, pp.65-81,
(1980).
9.Kudo, H. and K. Aoi, “Effect of Compression Test Condition upon Fracture of
a Medium Carbon Steel”, J. Japan Soc. Tech. Plasticity, Vol. 8, pp.17-27,
(1967).
10.Kobayashi, S., “Deformation Characteristics and Ductile Fracture of 1040
Steel in Simple Upsetting of Solid Cylinders and Rings”, Transaction ASME,
Ser. B, Vol. 92, (1970).
11.Kuhn, H.A., P.W. Lee and T. Erturk, “A Fracture Criterion for Cold
Forming”, Journal of Engineering Materials and Technology, Vol.4, pp.213-
218, (1973).
12.Lee, P.W. and H.A. Kuhn, “Fracture in Cold Upset Forging — A Criterion
and Model”, Metall. Trans, Vol. 4, pp.969-974, (1973).
13.Sowerby, R. and N. Chandrasekaran, “The Cold Upsetting and Free Surface
Ductility of Some Commercial Steels”, American Society For Metals, Vol. 3,
pp.257-263, (1984).
14.Wifi, A.S., A. Abdel-Hamid, H. El-Monayri and N. El-Abbasi, “Finite
Element Determination of Workability Limits for Disks and Rings under
Different Upsetting Conditions”, Journal of Materials Processing
Technology, Vol. 56, pp.918-932, (1996).
15.Gouveia, B.P.P.A., J.M.C. Rodrigues and P.A.F. Martins, “Fracture
Predicting in Bulk Metal Forming”, International Journal of Mechanical
Science, Vol.38, pp.361-372, (1996).
16.Gouveia, B.P.P.A., J.M.C. Rodrigues and P.A.F. Martins, “Ductile Fracture
in Metal Woking: Experimental and Theoretical Research”, Journal of
Materials Processing Technology, Vol.101, pp.52-63, (2000).
17.Wifi, A.S., A. Abdel-Hamid and N. El-Abbasi, “Computer-Aided Evaluation of
Workability in Bulk Forming Processes”, Journal of Materials Processing
Technology, Vol.77, pp.285-293, (1998).
18.Landre, J., A. Pertence, P. R. Cetlin, J. M. C. Rodrigues and P. A. F.
Martins,“On the utilization of ductile fracture criteria in cold forging”,
Finite Element in Analysis and Design, Vol. 39, pp.175-186, (2003).
19.Rao, A. Venugopal, N. Ramakrishnan, and R. Krishna Kumar, “A Comarative
Evaluation of the Theoretical Failure Criteria for Workability in Cold
Forging”, Journal of Materials Processing Technology, Vol.142, pp.29-42,
(2003).
20.Olsson, K., S. Karlsson and A. Melander, “The Influence of Notches,
Testing Geometry, Friction Conditions, and Microstructure on the Cold
Forgeability of Low Carbon Steels”, Scandinavian Journal of Metallurgy,
Vol.15, pp.238-256, (1986).
21.Janicek, L. and B. Maros, “The determination of the Cold Forgeability for
Specimens with Axial Notches of Heat Resisting and Corrosion Resisting
Chromium Nickel Steels”, Journal of Materials Processing Technology,
Vol.60,
pp.269-274, (1996).
22.Petruska, J. and L. Janicek, “Computationally-Experimental Workability
Determination of Compressed Cylindrical Specimen with Surface Defect”,
Journal of Materials Processing Technology, Vol.80-81, pp.572-578, (1998).
23.陳彥儒, “利用不同凹槽設計於圓柱鍛粗試驗以進行可鍛造性能評估”, 國立成功大學
機械工程系碩士論文, (2005).
24.Gunesekera, S., and S. Hoshino, “Analysis of Extrusion of Polygonal
Sections Through Streamlined Dies”, ASME J. Engineer Ind., Vol. 107,
pp.229, (1985).
25.Sethuraman, R., N. Venkata and G. K. Reddy, “Upper-Bound and Finite-
Element Analysis of Axisymmetric Hot Extrusion”, J. Material Processing
Technology, vol. 57, pp.14-22, (1996).
26.許進忠, “金屬擠伸模具與製程之電腦輔助最佳化設計”, 國立成功大學機械工程系
碩士論文, (1991).
27.Xia, J.X., K. Ikada and T. Murakami, “UBA Analysis of the Process of Pipe
Extrusion Through a Porthole Die”, J. Material Processing Technology,
vol.49, pp.371-385, (1995).
28.Tang, J., W.T. Wu and J. Walters, “Recent Development and Applications of
Finite Element Method in Metal Forming”, Journal Materials Processing
Technology, Vol. 46, pp.117-126, (1994).
29.Brethenoux, G.., E. Bourgain, G.. Pierson, M. Jallon and P. Secordel,
“Cold Forming Processes: Some Examples of Predictions and Design
Optimization using Numerical Simulations”, Journal of Materials Processing
Technology, Vol. 60, pp.555-562, (1996).
30.Ko, D. C., B. M. Kim and J. C. Choi, “Prediction of surface-fracture
initiation in the axisymmetric extrusion and simple upsetting of an aluminum
alloy”, Journal of Materials Processing Technology, Vol.62, pp.166-174,
(1996).
31.Taupin, Etience, Jochen, Breitling, Wei-Tsu and Taylan Altan, “Material
Fracture and Burr Formation in Blanking Results of FEM Simulations and
Comparison with Experiments”, Journal of Materials Processing Technology,
Vol.59, pp.68-78, (1996).
32.Zhang, X.Q., Y.H. Peng and X.Y. Ruan, “Simulation and Fracture Prediction
for Sintered Materials in Upsetting by FEM”, Journal of Materials
Processing Technology, Vol.105, pp.253-257, (2000).
33.Roy, S., S. Ghosh and R. Shivpuri, “A New Approach to Optimal Design of
Multi-Stage Metal Forming Processes with Micro Genetic Algorithms”,
International Journal of Machine Tools Manufacture, Vol.37, No.1, pp.29-44,
(1997).
34.Khoei, A.R., I. Masters and D.T. Gethin, “Design Optimization of Aluminium
Recycling Processes using Taguchi Technique,” Journal of Materials
Processing Technology, Vol.127, pp.96-106, (2002).
35.Dowey, S.J. and A. Matthews, “Taguchi and TQM Quality Issues for Surface
Engineered Applications”, Surface and Castings Technology, Vol.110, pp.86-
93, (1998).
36.Syrcos, G.P., “Die Casting Process Optimization Using Taguchi Methods,”
Journal of Materials Processing Technology”, Vol.135, pp.68-74, (2003).
37.Srinivasan, R. and A. Chaudhary, “Applying Numerical Taguchi Optimization
to Metal Forming”, Journal of Materials, pp.22-23, (1990).
38.Liou, J.H. and D.Y. Jang, “Forging Parameter Optimization Considering
Stress Distributions in Products Through FEM Analysis and Robust Design
Methodology ”, Int. J. Mach. Tools Manufact., Vol.37, No.6, pp.775-782,
(1997).
39.何宜彰, “三維冷鍛模具設計之系統化評估”, 國立成功大學機械工程系碩士論文,
(1999).
40.Lee, R.S., J.L. Jou and Y.C. Ho, “Optimization of Parameters Affecting Die
Life in Warm Forging”, 32nd ICFG Plenary Meeting, Slovenia, (1999).
41.Kojima, H. and S. Fujikawa, “Development of Forging Process Optimization
System Using Wear Model”, Proceedings of the 7th ICTP 1, pp.223-228, (2002).
42.郭哲良, “鎂合金薄板之熱間擠製加工之探討”, 國立台灣科技大學機械工程系碩士
論文,(2001).
43.Hsiang, S.H. and J.L. Kou, “An Investigation on the Hot Extrusion Process
of Magnesium Alloy Sheet”, Journal of Materials Processing Technology,
Vol.140, pp.6-12, (2003).
44.賴永琛, “用田口方法探討鎂合金AZ31軋延參數之影響”, 逢甲大學材料與製造工程所
碩士論文”, (2003).
45.黎琇瑩, “窗型模鋁擠型之三維有限元素分析與製程參數研究”, 國立成功大學機械
工程系碩士論文”, (2004).
46.Roy, S,S. Ghosh and R. Shivipuri, “A New Approach to Optimal Design of
Muti-stage Metal Forming Processes with Micro Genetic Algorithms”, Int. J.
Mach. Tool. Manuf., Vol. 37, pp.29-44, (1997).
47.Ko, D.C., D.H. Kim, B.M. Kim and J.C. Choi, “Methodology of Preform Design
Considering Workability in Metal Forming by the Artificial Neural Network
and Taguchi Method”, Journal of Materials Processing Technology, Vol.80-81,
pp.487-492, (1998).
48.Ko, D.C., D.H. Kim and B.M. Kim, “Application of Artificial Neural Network
and Taguchi Method to Preform Design in Metal Forming Considering
Workability”, Int. J. Mach. Tools Manufact., Vol.39, pp.771-785, (1999).
49.王水鐸, “高強度鋁合金鍛造成形極限之探討”, 國立成功大學機械工程研究所碩士
論文, (1986).
50.董福清, “應用微影方法於網格微細化之板金可成形性研究”, 國立成功大學機械工程
研究所碩士論文, (2000).
51.林威智, “應用微影技術於板金成形網格尺寸效應之研究”, 國立成功大學機械工程研
究所碩士論文, (2002).
52.Carlsson, S. and P.-L., Larsson, “On the Dtermination of Residual Stress
and Strain Fields by Sharp Indentation Testing. Part I: Theoretical and
Numerical Analysis”, Acta Mater., Vol. 49, pp. 2179-2191, (2001).
53.Carlsson, S. and P.-L., Larsson, “On the Dtermination of Residual Stress
and Strain Fields by Sharp Indentation Testing. Part II: Experimental
Investigation”, Acta Mater., Vol. 49, pp. 2193-2203, (2001).
54.Ma, Li, Samuel R. Low and John Song, “Finite-element Modeling and
Experimental Comparisons of the Effects of Deformable Ball Indenters on
Rockwell B Hardness Tests”, Journal of Testing and Evaluation, Vol. 31,
No.6, Nov. pp.514-523, (2003).
55.Lange, K.(ed.), “Handbook of Metal Forming”, McGraw-Hill, Inc.(1985).
56.Gray, A.G. (ed.), “Source Book on Cold Forming”, American Society for
Metals, (1976).
57.許光城, “冷鍛之整合電腦輔助工程”, 國立成功大學機械工程研究所博士論文,
(1991).
58.Ross, P.J., “Taguchi Techniques for Quality Engineering: Loss Function,
Orthogonal Experiments, Parameter and Tolerance Design”, New York, McGraw-
Hill, (1988).
59.李輝煌, “田口方法品質設計的原理與實務”, 高立圖書有限公司.