簡易檢索 / 詳目顯示

研究生: 嚴文志
Yen, Wen-Chich
論文名稱: 光漂白波導表面電漿共振現象之有限時域差分法分析與製作
Analysis and fabrication of photo-bleaching waveguide and surface plasmon resonance phenomenon with FDTD
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 106
中文關鍵詞: 有限時域差分法光電材料光漂白表面電漿共振
外文關鍵詞: electro-optic material, FDTD, photo-bleaching, surface plasmon resonance
相關次數: 點閱:146下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是要利用光電材料PMMA/DR1和PMMA-DR1來當作光波導的核心層,然而此材料在還沒有經過光漂白的製程前是不具有雙折射特性的,而在光漂白的過程中隨這UV曝光時間的增加nTM會上升反之nTE下降讓材料具有雙折射的特性,而本研究利用這特性來製造具有TM偏振效果的光波導,進而結合表面電漿共振的現象來製作出光波導式的表面電漿感測器。
    在許多發表過用FDTD方法模擬SPR感測器都是使用ATR的模型來做研究,因此在論文中試這使用FDTD的方法來分析波導式SPR感測器的可行性。然而本論文成功的驗證出可以使用FDTD的方法來分析波導式SPR感測器,其中包含多模光波導和折射率對表面電漿共振的現象的影響。最後在我們所設計的2-D 模型SPR感測器的模擬參數中在分析液折射率可以得到19 dB的消光差,並且在頻域響應的分析中當折射率從1.48到1.47共振波長會從620nm到633nm的偏移。再來論文中同時在2-D模型也分析了光漂白波導且在500μm的長度下有22dB消光差和實驗值也有一定程度的正相關。

    In the study, it uses electro-optic materials that are PMMA/DR1 and PMMA-DR1 to fabricate the optical waveguide with photo-bleaching method. The photo-bleaching method is useful to fabricate high-performance optical waveguide, because it can precisely control the birefringence refractive index of electro-optic materials. Therefore, using the optical properties of PMMA/DR1 and PMMA-DR1 can fabricate TM-pass optical waveguide, and the TM-pass optical waveguide combines surface plasmon resonance phenomenon to produce SPR sensor of optical waveguide.
    On the other hand, most of the published researches use the finite-difference-time domain (FDTD) method to simulate ATR SPR sensor, and get the agreement result. Therefore, the research proposes to model the waveguide SPR sensor with FDTD method in this thesis. Finally, the research successfully simulate SPR sensor characteristic that includes of the effect of high order mode and the refractive index of analysis. Furthermore, the designed 2-D SPR model shows that the extinction ratio is about 19dB in refractive index of analysis (1.48). In spectrum analysis, the designed 2-D model also shows the absorption wavelength about 620nm to 633nm, when the analysis refractive index is increased from 1.47 to 1.48. On the other hand, the research also simulates the TM-pass waveguide in 2-D model, and the extinction ratio is 22dB with waveguide of 500μm. Although model of photo-bleaching waveguide is relatively simple, the results can get converged numerical results that can get positive tendency in the experiment.

    Abstract I 中文摘要 III Table of Contents V List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Review 2 1.2.1 SPR Sensor of Prism Coupling 3 1.2.2 SPR Sensor of Grating Coupling 4 1.2.3 SPR Sensor of Optical Fiber Coupling 4 1.2.4 SPR Sensor of Optical Waveguide Coupling 5 1.3 The Destination and Motivations of the Research 6 1.4 The Research of Method 7 1.5 Overview of Chapter 7 Chapter 2 Basic Theory 10 2.1 Preface 10 2.2 Characteristic and Application of Polymer 10 2.2.1 Photo-bleaching Method 11 2.2.2 TM and TE-pass Waveguide with Photo-bleaching Method 13 2.3 Optical Waveguide Theory 13 2.3.1 Basic Theory of Waveguide 14 2.3.2 TE and TM Mode 16 2.4 Theory of Surface Plasmon Resonance 18 2.4.1 Evanescence Wave 18 2.4.2 Surface Plasmon Resonance 20 2.4.3 Three Layers Optical Waveguide 25 2.5 The Theory of Finite-Difference Time-Domain 27 2.5.1 The Algorithm of Finite-Difference Time-Domain 27 2.5.2 Reduce to Two Dimensions 29 2.5.3 The Yee Algorithm 30 2.5.4 Boundary Condition 31 2.5.5 Dielectric Function of Metallic Material 33 Chapter 3 FDTD Simulation 46 3.1 Simulation Method 46 3.2 Simulation of Optical Waveguide Mode 46 3.2.1 The Simulation Configuration of Optical Waveguide Mode 46 3.2.2 The simulation Result of Optical Waveguide Mode 47 3.3 Simulation of SPR Phenomenon 48 3.3.1 The simulation Configuration of SPR Phenomenon 48 3.3.2 Light Source Properties 49 3.3.3 Simulation Setting 50 3.3.4 Waveguide of SPR Phenomenon 51 3.3.5 Spectrum Analysis of SPR Phenomenon 52 3.3.6 Variations in the Propagation Mode, Optical Waveguide and Thickness of Core Layer 53 3.3.7 Photo-bleaching simulation 54 3.3.8 The Discussion of SPR Simulation Results 55 Chapter 4 Device Fabrication 71 4.1 Preparation Material 71 4.2 Mask Design 71 4.3 The Step of Device Fabrication 72 4.3.1 The Flow Chart of Device Fabrication 72 4.4 Discuss of Fabrication Problem 78 4.4.1 The Roughness of UV15-7LRI 78 4.4.2 The Problems of PMMA/DR1 and PMMA-DR1 78 Chapter 5 Device Measurement 87 5.1 Cutting and Polishing of Device 87 5.1.1 The Problems of Cutting and Polishing 87 5.2 The Coupling of Optical Waveguide 88 5.3 The Configuration of Optical Measurement 89 5.4 The Results of Measurement 90 Chapter 6 Conclusion 97 6.1 Conclusion 97 6.1.1 Conclusion of FDTD Simulation 97 6.1.2 Conclusion of Fabrication 98 6.2 Further Work 98 Bibliography 100 Autobiography 106

    Barnes, W. L., Dereux, A., and Ebbesen, T. W., “Surface plasmon subwavelength optics, ” Nature, Vol. 424, pp. 824-830, August, 2003.

    Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, 114, 185-200, 1994.

    Chadwick, B., and Gal, M., “An optical temperature sensor using surface plasmon,” Jpn. J Appl. Phys., Part I, Vol. 32, pp.2716-2717, 1993.

    Chien, F. C., and Chenb, S. J., “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Bisosensors and Bioelectronics, Vol.20, pp. 633-642, 2004.

    Douglas C., and David F., “Modeling Surface Plasmon Resonance in Sensors Using Finite-Difference Time-Domain Analysis,” SPIE, Vol.2131, pp. 507-513, 1994

    Dostalek, J., Ctyroky, J., Homonla, Brynda, E., Skalsky, M., Nekvindova, P., Spirkova, J., Skvor, J., and Schrofel, J., “Surface plasmon resonance biosensor based on itegrate optical waveguide,” Sensors and Actuators B, Vol.76, pp 8-12, 2001.

    Harris, R. D., and Wilkinson, J. S., “Waveguide surface plasmon resonance sensors,” Sensor and Actuator B, Vol. 29, pp. 261-267, 1995.
    Heideman, R. G., Kooyman, R. P. H., and Greve, J., “Development of an optical waveguide interferometric immunosensor, ” Sensors and Actuators B 10, pp.209-pp.217, 1993.
    Hecht, E., OPTICS, Addison Wesley, 2002

    Hideki, H., Masaya, N., and Koichiro, T., “Destructive interference effect om surface plasmon resonance in terahertz attenuated total reflection, ” Optical Express, Vol.13, No.26, pp.10801-10814, 2005.

    Jihua, G., Zhaoming, Z., and Weimin, D., “Small-sngle measurement based on surface-plasmon resonance and the ues of magneto-optical modulation,” Applied Optics, Vol.38, No.31,pp6550-6555,1999.

    Jiri, H., Sinclair, S., Yee, and Gunter, G., “surface plasmon resonance sensors: review,” Sensor and Actuators B, Vol.54,pp.3-15,1999.

    Johnston, K. S., Karlson, Jung, S. R. C., and Yee, S. S., “New analytical technique for characterization of thin film using surface plasmon resonance,” Mater. Chem. Phys., Vol. 42, pp. 242-246, 1995.

    Jorgenson, R. C., and Yee, S. S., “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensor and Actuator B, Vol. 12, pp. 213-220, 1993.

    Kretschmann, E., and Raether, H., “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch., Vol. pp. 2135-2136, 1968.

    Kreuwel H. J. M., Lambeck P. V., Van Gent J., and Popma T. J. A., “Surface plasmon dispersion and luminescence quenching applied to a planar waveguide sensors for measurement of chemical concentrations,” Proc. SPIE vol.789, pp. 218-224, 1987.

    Lee, S. S., Garner S., Steier, W. H., and Shin, S. Y., “Integrated optical polarization splitter based on photobleaching-induced birefringence in azo dye polymer,” Applied Optics, Vol. 38, pp. 530-533, 1999.

    Lavers C.R., and Wilkinson J.S., “A waveguide-coupled surface plasmon resonance sensor for an aqueous environment,”Sens. Actuators B, vol. 22, pp. 475-481, 1994.

    Lee, S. S., Garner, S., Chen, A. T., Chuyanov, V., Steier,W.H., Ahn,S.W., and Shin, S. Y., “ TM-pass polarizer based on a photobleaching-induced waveguide in polymers,” IEEE Photonics Technology Lett. Vol. 10, pp. 836-838, 1998

    Liedberg, C., Nylander, I., and Lundstrom, “surface plasmons resonance for gas detection and biosensing,” Sensors and Actuators, 3, pp. 79-88, 1983.
    Markovic, M. I., and Rakic, A. D., “Determination of reflection coefficients of laser light of wavelength from the Surface of aluminum using the Lorentz-Drude model,” Applied optics, 29, pp.3479-3483, 1990.

    Markovic, M. I., and Rakic, A. D., “Determination of optical properties of aluminum including electron reradiation in the Lorentz-Drude model,” Opt. Laser Technol. 22, pp.394-398, 1990.

    Nylander, C., Liedberg, B., and Lind, T., “Gas detection by means of surface plasmon resonance,” Sensors and Actuators, Vol. 3, pp.79-88, 1982.

    Ono, H., Kowatari, N., and Kawatsuki, N., “Study on dynamics of laser-induced birefringence in azo dye doped polymer films,” Optical Materials, Vol. 15, pp. 33-39, 2000.

    OptiFDTD- Technical Background and Tutorials, Optiwave, 2005.

    Otto, A., “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, Vol. 216, pp.398-410, 1968.

    Patrick, S., and Gilbert, T., “Profilometry by zero-order interference fringe identification”, J. Mod. Optics, Vol.40, No.9, pp.1691-1700 1993.
    Rakic, A. D., and Djurisic, A. B., “Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices,” Applied Optics, August, Vol.37, No.22, pp. 5271-5283, 1998.

    Pernice, W. H. P., Payne F. P., Gallagher D. F. G., “An FDTD method for the simulation of dispersive metallic structures”, Optical and Quantum Electronic, vol. 38, pp.843-856. 2006.

    Slavı´k, R., Homola, J., and Brynda, E., “A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B,” Biosensors and Bioelectronics, Vol. 17, pp. 591-595, 2002.

    Wang, T. J., Tu, C. W., Liu, F. K., and Chen, H. L., “Surface Plasmon Resonance Waveguide Biosensor by Bipolarization Wavelength Interrogation,” Photonic technology letter, vol.16, no.7, 2004

    Wang, T. J., Tu, C. W., and Liu, F. K., “Integrated-Optic Surface-Plasmon –Resonance Biosensor Using Gold Nanoparticles by Bipolarization Detection,” Quantum Electronic, vol.11, No. 2, 2005.

    Wood, R. W., “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Magm., Vol. 4, 396-402, 1902.
    Wyckoff, R. W. G., Crystal structure, Interscience, New York, 1963.

    Yang, Y., Yin, J., Cao, Z., Shen, Q., and Chen, X., “Real-time investigation photobleaching process using non-scanning ATR method: Measurement of the refractive index and the thickness of polymer,” Material Letters, Vol. 60, pp. 2470-2474, 2006.

    Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas and Propagation, Vol. 14, pp. 302-307, 1966.

    Yeh, T. S., Chu, C. S., and Lo, Y. L., “Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices,” Sensors and Actuators B 119, pp.701-pp.707, 2006.

    Zhang, L. M., and Uttamchandani, D., “Optical chemical sensing employing surface plasmon resonance,” Electron. Lett. 23, pp.1469-1470, 1998.
    呂輝宗,“銀-氟化鎂-銀薄膜系統的表面電漿波研究,” 碩士論文,國立中央大學物理與天文研究所, 1986

    劉文亮, “光漂白於光電高分子之波導式表面電漿共振感測器,” 國立成功大學機械系, Tainan, Taiwan, R.O.C., June 2004.

    戴欣樺, “次波長聚焦現象之光源特性研究,” 國力成功大學機械系, Tainan, Taiwan, R.O.C., June 2005.

    下載圖示 校內:2012-08-17公開
    校外:2012-08-17公開
    QR CODE