簡易檢索 / 詳目顯示

研究生: 吳尚銘
Wu, Sheng-Ming
論文名稱: 減少數值延散於MQ無網格數值法模擬溶質傳輸之研究
Reduction of Numerical Dispersion in Multiquardrics Radial Basis Collocation Method in Solute Transport Simulation
指導教授: 徐國錦
Hsu, Kuo-Chin
共同指導教授: 楊德良
Young, Der-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 79
中文關鍵詞: 無網格數值方法MQ (Multiquardric)徑向基底函數數值延散平流延散方程式
外文關鍵詞: Meshless method, Multiquardric radial basis function collocation method (MQ-RBFCM), Numerical dispersion, Advection-dispersion equation
相關次數: 點閱:130下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 孔隙介質中之溶質傳輸可用一數學模式-平流延散方程式表示之,當使用數值方法對其求解時,於平流項數值延散將會產生。本研究使用MQ無網格法 (MQ-RBFCM)發展平流延散模式,結果與解析解相當吻合,並且對MQ-RBFCM模式中形狀參數,時間步距,時間權重與時間離散方法進行敏感度分析,接著提出移動式佈點方法用來減少數值延散,此方法利用無網格數值方法佈點自由之優點,將較密之點佈於峰值之週圍,並且隨著時間移動,此一方法較均勻佈點節省佈點數並且可以擁有相同精準度。而在效能方面,結果顯示移動式佈點無法在小區域的模擬節省模擬時間,因為移動式佈點必須在每一個時步下重新佈點並且內插下一個時間之值;而在大區域的模擬,移動式佈點可以節省模擬時間,因為在大區域之下,加密佈點將極大的增加矩陣的大小,而導致傳統均勻佈點解算的困難。

    Solute transport in porous medium can be described by the mathematical model of advection-dispersion equation (ADE). When using numerical method to solve ADE. Numerical dispersion appears in the numerical results. This study applies meshless mehod ot solve ADE. Multiquardric radio basis function collocation method (MQ-RBFCM) is used to model the advection-dispersion solute transport. The result shows good match with the analytical solution. Sensitivity analysis of parameters in MQ-RBFCM focus on shape parameter, time marching interval, time weighting parameter and time integration schemes. Marching nodal arrangements are proposed to reduce numerical dispersion. The allocation of nodes for meshless method is very flexible. The marching nodal arrangement allocates the dense nodes around the front and moving with time. The total number of nodes can be effectively reduced and keep the same accuracy compared with uniform arrangement. For efficiency, the result shows that the marching nodal arrangement cannot significantly reduce the simulation time in small domain because it needs to relocate the nodes and interpolate the initial value every time step. For large domain, the marching nodal arrangement shows the superiority, classical since reduction in the nodal distance will rapidly increase the nodes number in uniform arrangement to cause the difficult of solving linear algebraic system.

    摘要..............................................I Abstract..........................................II 誌謝..............................................III Content...........................................IV List of Figure....................................VI List of Table.....................................XI Notation..........................................XII Chapter 1 Introduction............................1 1.1Background and Motivation......................1 1.2 Literature Review.............................3 1.2.1 Solute Transport Theory.....................3 1.2.2 Meshless Methods............................4 1.3 Flow chart of the research....................6 Chapter 2 Methodology.............................8 2.1 Theory of solute transport....................8 2.1.1 Advection...................................8 2.1.2 Diffusion and dispersion....................8 2.1.3 Derivation of advection-dispersion equation.12 2.1.4 Analytical solutions........................15 2.2 Meshless Method...............................16 2.2.1 Radial Basis Function.......................17 2.2.2 Theory of Radial Basis Function Collocation Method (RBFCM)...........................................18 Chapter 3 MQ-RBFCM for solute transport modeling..22 3.1 1D MQ-RBFCM numerical model for advection transport.........................................22 3.2 1D MQ-RBFCM numerical model for advection-dispersion transport.........................................25 3.3 Methods to reduce numerical dispersion........26 3.3.1 Nodal distribution..........................27 3.3.2 Time marching methods.......................32 Chapter 4 Results and Discussions.................35 4.1 Parameters and modeling domain................35 4.2 Sensitivity analysis for MQ-RBFCM.............36 4.2.1 Shape parameter.............................37 4.2.2 Time marching interval......................41 4.2.3 Nodal distributions and marching nodes methods...........................................55 4.3 Efficiency of marching nodal arrangement......66 Chapter 5 Conclusions and Suggestions.............72 5.1 Conclusions...................................72 5.2 Suggestions...................................73 Reference.........................................74

    Al-Niami, A.N.S., and K.R., Rushton, Analysis of flow against dispersion in porous media, J. Hydrol, vol.33 pp.87–97, 1977.
    Atangana, A., and A. Kilicman, Analytical Solutions of the Space-Time Fractional Derivative of Advection Dispersion Equation, Mathematical Problems in Engineering, Vol.2013, Article ID 853127, 2013
    Barry, D.A., and J.C., Parker, Approximations for Solute Transport Through Porous Media With Flow Transverse to Layering, Transport in Porous Media, vol.2 pp.65-82, 1987.
    Bear, J., Dynamics of fluids in porous media, New York:Amr. Elsev. Co, 1972.
    Bedient, P.B., H.S., Rifai, and G.J., Newell, Ground Water Contaminant, Prentice Hall, Englewood Cliffs, New Jersey 07632, 1994.
    Bergman, S., Functions satisfying certain partial differential equations of elliptic type and their representation, Duke Math. J., Vol. 14, pp. 349–366, 1947.
    Boztosuna, I., and A., Charafib, An analysis of the linear advection–diffusion equation using mesh-free and mesh-dependent methods, Engineering Analysis with Boundary Elements, vol.26, pp.889-895, 2002.
    Chen, J.S., C.W. Liu, H.T. Hsu, and C.M. Liao, A Lapace transformed power series solution for solute transport in a convergent flow field with scale-dependent dispersion. Water Resour. Res., 39(8): doi: 10.1029/2003WR002299, 2003.
    Chen, W., New RBF collocation schemes and kernel RBFs with applications, Lect. Notes Comput. Sci. Eng., vol.26, pp.75–86, 2002.
    Chinchapatnam, P.P., K. Djidjeli, P.B. Nair, Unsymmetric and symmetric meshless schemes for the unsteady convection-diffusion equation. Comput. Methods Appl. Mech. Eng., vol.195(19–22), pp.2432–2453, 2006.
    Dagan, G., Statistical theory of ground water flow and transport: Pore to laboratory, laboratory of formation and formation to regional scale, Water Resour. Res., vol.22,pp.120S-134S, 1986
    Duan, Y., P.F., Tang, T.Z., Huang, S.J., Lai, Coupling projection domain decomposition method and Kansa’s method in electrostatic problems, Comput. Phys. Commun., vol.180(2), pp.209–214, 2009.
    Duchon, J., Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Constructive theory of functions of several variables Springer, Lecture Notes in Math, vol.571, pp.85–100, 1977.
    Franke, R., Scattered data interpolation : tests of some methods, Maths Comput., Vol. 38, No. 157, pp. 181-200, 1982.
    Fetter, C.W., Applied Hydrogeology, Macmillan College Publishing Company, Inc., 691 pp, 1994.
    Freeze, R. A., and J.A. Cherry, Groundwater. Englewood Cliffs, NJ.:Prentice Hall, 604 PP, 1979.
    Gelhar, L.W., A.L., Gutjahr and R.L., Naff, Stochastic analysis of macro dispersion in aquifers. Water Resour. Res., vol.15, no.1, pp.1387-1391, 1979.
    Gelhar, L.W., Stochastic subsurface hydrology from theory to applications. Water Resour. Res., vol.22(9) pp.135–145, 1986.
    Gu, M.H., C.M., Fan and D.L., Young, The method of fundamental solutions for the multi-dimensional wave equations, Journal of Marine Science and Technology, Vol. 19, No. 6, pp. 586-595, 2011.
    Harder, R.L., and R.N., Desmarais, Interpolation using surface splines,
    J. Aircraft, pp.189-191, 1972.
    Hardy, R.L., Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., Vol. 76, pp. 1905-1915, 1971.
    Harleman, D.R.F., and R.R., Rumer, Longitudinal and lateral dispersion in an isotropic porous medium, J. Fluid Mech, pp 385–394, 1963.
    Houbolt, J.C., A recurrence matrix solution for the dynamic response of elastic aircraft, J Aeronauti Sci., 17, pp. 540–550, 1951.
    Hsieh, P.F, and H.D., Yeh, Semi-analytical and approximate solutions for contaminant transport from an injection well in a two-zone confined aquifer system, Journal of Hydrology vol.519 pp.1171-1176, 2014.
    Kansa, E. J., Multiquadrics-¬a scattered data approximation scheme with applications to computational fluid-dynamics-I. Surface approximations and partial derivatives, Computers and Mathematics with Applications, Vol. 19, No. 8/9, pp. 127-145, 1990.
    Konikow, L.F., and J.D., Bredehoeft, Computer model of two-dimensional solute transport and dispersion in ground water, U.S. Geol. Survey Techniques of Water-Resources Investigations, Book 7, Chapter C2, 90 p, 1978.
    Kumar, A., D.K., Jaiswal, and N., Kumar, Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain, J. Earth Syst. Sci., vol.118 No. 5 pp539-549, 2010.
    Kupradze, V.D. and Aleksidze, M.A., The method of functional equations for the approximate solution of certain boundary value problem, Zh. Vych. Mat., Vol. 4, No. 4, pp. 683, 1964.
    Lantz, R.B., Quantitative evaluation of numerical diffusion, Petro. Eng. J., vol.11, pp.315-320, 1971.
    La Rocca, A., and A., Hernandez Rosales and H., Power, Radial Basis Function Hermite Collocation Approach for the Solution of Time Dependent Convection–Diffusion Problems. Engineering Analysis with Boundary Elements, Vol. 29, No. 4, pp. 359–370, 2005.
    Logan, L.D., Solute transport in porous media with scale-dependent dispersion and periodic boundary conditions. J. Hydrol., vol.184 pp.261-276, 1996.
    Logan J.D., and V., Zlotnik, The convection-diffusion equation with periodic boundary conditions, App. Math. Lett., vol.8, no.3, pp.55-61, 1995.
    Lynch, D.R., and K., O'Neill, Continuously deforming finite elements for the solution of parabolic problems, with and without phase change, International Journal for Numerical Methods in Engineering, Vol. 17, Issue 1, pp 81–96, 1981.
    Meenal, M., and T.I., Eldho, Simulation-Optimization Model for In Situ Bioremediation of Groundwater Contamination Using Mesh-Free PCM and PSO, Journal of Hazardous, vol.18(2),pp.207–218, 2014.
    Morton, K.W., Stability of finite difference approximations to a diffusion–convection equation, International Journal for Numerical Methods in Engineering, Vol. 15, Issue 5, pp 677–683, 1980.
    Neuman, S.P., C.L., Winter, and C.N., Newman, Stochastic theory of field-scale Fickian dispersion in anisotropic porous media, Water Resour. Res., vol.3, pp453-466, 1987.
    Ogata, A., and R.B. Banks, A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media, US Geol. Surv. Prof., pp 411-A 1–9, 1961.
    Ogata, A., Theory of dispersion in granular media; US Geol. Sur. Prof, pp 411-I 34, 1970.
    Shamir, U.Y., and D.R.F., Harleman, Dispersion in layered porous media, J. Hydraul. Div., vol. 95 pp.237–260, 1967.
    Shokri, A., and M., Dehghan, A Not-a-Knot meshless method using radial basis functions and predictor–corrector scheme to the numerical solution of improved Boussinesq equation, Computer Physics Communications, vol.181, pp.1990-2000, 2010.
    Smedt, F.D., Analytical solutions for transport of decaying solutes in rivers with transient storage, Journal of Hydrology, vol.330 pp.672– 680, 2006.
    Trefftz, E., Ein Gegenstu ̈ck zum ritzschen Verfahren. Proc. 2nd Int. Cong. Appl. Mech., Zurich, pp. 131-37, 1926.
    Wang, J.G., G.R. Liu, P. Lin, Numerical analysis of Biot’s consolidation process by radial point interpolation method, International Journal of Solids and Structures, Vol.39, pp1557-1573, 2002.
    Yates, S.R., An analytical solution for one-dimension transport in 68 heterogeneous porous media. Water Resour. Res., 26(10): 2331-2338, 1990.
    Yates, S.R., An analytical solution for one-dimension transport in porous media with an exponential dispersion function. Water Resour. Res., 28(2): 149-2154, 1992.
    Young, D. L., C. C. Tsai, K. Murugesan, C. M. Fan, C. W. Chen, Time-dependent fundamental solutions for homogeneous diffusion problems, Engineering Analysis with Boundary Element, Vol.28, pp.1463-1473, 2004.
    Young, D.L., C.L. Chiu, C.M. Fan, C.C. Tsai, Y.C. Lin, Method of fundamental solutions for multidimensional stokes equations by the dual-potential formulation, European Journal of Mechanics-B/Fluids,Vol.25, pp.63-73, 2006.
    Young, D.L., M.H., Gu, C.M., Fan, The time-marching method of fundamental solutions for wave equations, Engineering Analysis with Boundary Elements , Vol.33, pp.1411–1425, 2009.
    Zerroukat, M., and H., Power, C.S., Chen, A Numerical Method for Heat Transfer Problems Using Collocation and Radial Basis Functions, International Journal for Numerical Methods in Engineering, Vol. 42, No. 7, pp. 1263-1278, 1998.
    張志瑋,以MQ無網格數值法分析孔彈性理論之研究,國立成功大學資源工程學系碩士論文,2012
    蔡文瀚,不均勻佈點之MQ無網格數值法於地下水模擬之應用,國立成功大學資源工程學系碩士論文,2013
    朱紀樺,應用馬可夫鍊蒙地卡羅法推估水文地質參數之研究,國立成功大學資源工程學系碩士論文,2015

    下載圖示 校內:2020-08-28公開
    校外:2020-08-28公開
    QR CODE