簡易檢索 / 詳目顯示

研究生: 柏可黎
Purbarani, Meladia Elok
論文名稱: 以中孔洞二氧化鈦球珠/磷酸鈷奈米複合材料進行產氫之研究
Hydrogen generation using nitrogen-doped TiO2 mesoporous beads/cobalt-phosphate nanocomposites
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 55
中文關鍵詞: 產氫中孔洞二氧化鈦珠光電化學光電化學電池磷酸鈷
外文關鍵詞: hydrogen generation, mesoporous TiO2 beads, photoelectrochemical, photoelectrochemical cell, cobalt-phosphate.
相關次數: 點閱:128下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在探討氮摻雜二氧化鈦中孔洞珠/磷酸鈷(CoPi)奈米複合物的光電化學活性之研究。本研究採用微波輔助水熱(MAH)法有效且快速地將氮摻雜進二氧化鈦中。我們利用添加不同莫耳比例之前驅物去控制但摻雜之含量。接著,氮摻雜中孔洞二氧化鈦珠與CoPi混合,使中孔洞二氧化鈦珠之能隙能夠縮減,有利於系統中之光電化學催化反應進行。中孔洞二氧化鈦珠經由兩個步驟合成,分別是溶膠-凝膠法以及水熱法。我們利用掃描式電子顯微鏡(SEM)以及X-光光電子能譜儀分別去檢視所合成的二氧化鈦粉末之表面形貌以及組成。接著,利用紫外-可見光譜儀去分析奈米複合物之光電特性。最後,我們將複合材料作為光陽極並且應用於光電化學電池系統中。

    This study has been focused on the development of the photoelectrochemical activity of nitrogen-doped TiO2 mesoporous beads/cobalt-phosphate (CoPi) nanocomposites. Doping of nitrogen have been done simultaneously by facile and efficient method, microwave-assisted hydrothermal (MAH). The amount of nitrogen-doped was controlled by the addition of each precursor with different ratio molar. Later N-doped TiO2 mesoporous beads was mixed with CoPi to reduce its bandgap of TiO2 mesoporous beads and for catalysts the photoelectrochemical reaction in the system. Mesoporous TiO2 beads were prepared over two steps, including sol-gel and hydrothermal processes. The morphology and its composition of the resulting beads powder were examined using scanning electron microscope (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The optical properties of the nanocomposites were observed by UV-Visible spectroscopy. Finally, the resulted photoanode were eveluated using photoelectrochemical cell system.

    Contents Acknowledgements………………….……………………………………………..i Abstract (Chinese) ………………………….…………………………………….ii Abstract…………………………………………………………………………….iii Contents………………………………………………………………………...….iv List of Tables……………..………………………………………………………..vi List of Figures……………………………………………………...…………..…vii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Research Objectives and Motivation 3 Chapter 2 Theoretical Background 4 2.1 Photoelectrochemical Water Splitting 4 2.2 Cocatalyst water splitting 6 2.2.1 Cobalt Phosphate 7 2.3 Characterization and Mechanism od N-Doped TiO2 9 2.4 Mesoporous TiO2 beads 10 2.4.1 Synthesis of Anatase Mesoporous TiO2 beads 11 Chapter 3 Experimental Section 21 3.1 Sample Preparation 21 3.1.1 Synthesis of Mesopourous TiO2 beads 21 3.1.2 Fabrication of TiNxO2-x film 21 3.1.3 Fabrication of CoPi deposited onto TiNxO2-x Film 22 3.2 Characterization 22 3.2.1 Scanning Electron Microscopy (SEM) 22 3.2.2 X-Ray Photoelectron Spectroscopy (XPS) 24 3.2.3 Ultraviolet-Visible (UV-Vis) Spectroscopy 26 3.2.4 Linear Sweep Voltammetry (LSV) 26 Chapter 4 Results and Discussion 29 4.1 Characterization and Composition Structure of Mesoporous beads and TiNxO2-X 29 4.1.1 Scanning Electron Microscopy (SEM) 29 4.1.2 X-Ray Photoelectron Spectroscopy (XPS) 29 4.2 Optical and PCE Properties of Mesoporous beads and TiNxO2-x 37 4.2.1 UV-Visible spectra 37 4.2.2 Photoelectrochemical performance of mesoporous beads and TiNxO2-x 38 4.3 Composition structure of mesoporous TiNxO2-x/CoPi nanocomposites 40 4.3.1 XPS Result 40 4.4 Optical and PEC properties of mesoporous TiO2 beads and TiNxO2-x/CoPi nanocomposites 43 4.4.1 UV-Vis absorption spectra 43 4.4.2 PEC Performance of mesoporous TiNxO2-x/CoPi nanocomposites 44 Chapter 5 Conclusion 50 Future Work 51 References………………………………………………………………………....52

    References:
    [1] Zhebo, C.; Huyen, N.D.; Eric, M., Photoelectrochemical Water Splitting Standards, Experimental, Methods, and Protocols, New York, 2013.
    [2] Ying, L. et al Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell. Appl. Phys. Lett. 106, 123901, 2015.
    [3] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38, 1972.

    [4] A. Fujishima, H. Irie, K. Hashimoto, TiO2 photocatalysis: A Historical Overview and Future Prospects, Japanese Journal of Applied Physics, Vol.44, No.12, 2005.

    [5] O, Carp; C.L. Huisman; A. Reller Photoinduced reactivity of titanium oxide, Germany, 2004.

    [6] C.W. Hsu; P. Chen; J.M. Ting, Journal of The Electrochemical Society, 160 (3) H160-H165 , 2013.

    [7] Jinhui, Y.; Donge, W.; Hongxian, H.; Can, L., Roles of Cocatalyst in Photocatalysis and Photoelectrocatalysis, Dalian, 2012.

    [8] McCrory et al, Benchmarking Heterogeneous Electrocatalyst for the Oxygen Evolution Reaction, Journal of the American Chemical Society, 2013.

    [9] Zhong DK, Sun JW, Inumaru H, Gamelin DR. Solar water oxidation by composite catalyst/a-Fe2O3 photoanodes. Journal American Chemical Society, 2009.

    [10] Zhong DK, Gamelin DR. Photoelectrochemical water oxidation by cobalt catalyst (“CoePi”)/a-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck, Journal American Chemical Society, 2012.

    [11] Zhong DK, Choi S, Gamelin DR. Near-complete suppression of surface recombination in solar photoelectrolysis by “CoPi” catalyst-modified W: BiVO4. Journal American Chemical Society , 2011

    [12] Zhong DK, Cornuz M, Sivula K, Gratzel M, Gamelin DR. Photo-assisted electrodeposition of cobaltephosphate (CoPi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci, 2011.

    [13] Dening, L.; Liqiang, J.; Peng, L.; Junwang, T.; Honggang, F.; ACS Appl. Mater. Interfaces 2013, 5, 4046−4052

    [14] G. Ai, R. Mo, H. Li, and J. Zhong, Cobalt phosphate modified TiO2 nanowire arrays as co-catayst for solar water splitting, Nanoscale, 2015.

    [15] H. Yoneyama, H. Sakamoto, H. Tamura, Electrochim. Acta (1975)

    [16] Y. Liu, A. Hagfeldt, X. R. Xiao, S. E. Lindquist, Sol. Energy Mater. Sol. Cells
    (1998)

    [17] R. N. Pandey, M. Misra, O. N. Srivastava, Int. J. Hydrogen Energ. (1998)

    [18] V. Aranyos, H. Grennberg, S. Tingry, S. E. Lindquist, A. Hagfeldt, Sol. Energy
    Mater. Sol. C. (2000) 97
    [19] R. V.D. Krol and M. Gratzel, Photoelectrochemical Hydrogen Production, Electronic Materials: science & Technology, 2011.

    [20] Tsuchiya, H., Macak, J.M., Sieber, I., Taveira, L., Ghicov, A., Sirotna, K., Schmuki, P.: Selforganized porous WO3 formed in NaF electrolytes. Electrochem. Commun. 7, 295–298, 2005.

    [21] Matthew W. Kanan, Yogesh Surendranatha, Daniel G. Nocera "Cobalt–phosphate oxygen-evolving compound" Chem. Soc. Rev, volume 38, 109-114, 2009.

    [22] Anderson, J. B.; Kostiner, E.; Miller, M. C.; Rea, J. R. "Crystal structure of cobalt orthophosphate Co3(PO4)2" Journal of Solid State Chemistry, vol. 14, 372-7, 1975.

    [23] Wang, D.; Li, R.; Zhu, J.; Shi, J.; Han, J.; Zong, X.; Li, C. PhotocatalyticWater Oxidation on BiVO4 with the Electrocatalyst as an Oxidation Cocatalyst: Essential Relations between Electrocatalyst and Photocatalyst. J. Phys. Chem. C 2012, 116, 5082–5089.

    [24] Xinjian, S.; Kan, Z.; Jong, H. P., International Journal of Hydrogen Energy 38, 12725-12732, 2013.

    [25] Kim et al. High-Efficiency Electrode Based on Nitrogen-Doped TiO2 Nanofibers for Dye-Sensitized Solar Cells. Electrochemical Acta., 115, 493-498, 2014.

    [26] Wang et al. Nitrogen Doped 3D Titanium Dioxide Nanorods Architecture with Significantly Enhanced Visible Light Photoactivity. J. Phys. Chem. DOI: 10.1021/jp512622j. 2015
    [27] Wilson, J. N.; Idriss, H. Langmuir 20, 10956, 2004.

    [28] D. Li. H. Haneda, S. Hishita, and N. Ohashi, Chem. Mater. 2005, 17, 2588-2595

    [29] C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nano Lett., 3, 1049–1051, 2003.

    [30] R. Asahi, T. Morikawa, H. Irie and T. Ohwaki, Chem. Rev., 2014, 114, 9824–9852.

    [31] C. W. Dunnill and I. P. Parkin, Dalton Trans., 2011, 40, 1635–1640.

    [32] S. Sato, Chem. Phys. Lett., 1986, 123, 126–128.

    [33] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 2001, 294, 269–271.

    [34] W. Zhang, L. Zou, R. Lewis and D. Dionysio, J. Mater. Sci. Chem. Eng., 2014, 2, 28–40.
    [35] Z. Zhao and Q. Liu, J. Phys. D: Appl. Phys., 2008, 41, 025105.
    [36] Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2 Beads Achieve Power Conversion Efficiency Over 10%. Acs Nano. 2010, 4420–4425.
    [37] Chen, D.; Huang, F.; Cheng, Y. B.; Caruso, R. A. Mesoporous Anatase TiO2 Beads with High Surface Area and Controllable Pore Sizes : A Superior Candidate for High-Performance Dye-sensitized Solar Cells. Adv. Mater. 2009, 21, 2206–2210.

    [38] Chen, D.; Cao, L.; Huang, F.; Imperia, P.; Cheng, Y. B.; Caruso, R. A. Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14–23 nm). J. Am. Chem. Soc. 2010, 132, 4438–4444.
    [39] Q. Y. Wang, X. C. Yang, X. L. Wang, M. Huang, and J. W. Hou, Electrochim. Acta,62, 158 (2012).

    [40] P. Wang, T. Zhou, R. Wang, and T.-T. Lim, Water Research, 45, 5015 (2011).

    [41] H. Huang, L. Jiang,W. K. Zhang, Y. P. Gan, X. Y. Tao, and H. F. Chen, Solar EnergyMaterials and Solar Cells, 94, 355 (2010).

    [42] M. Sathish, B. Viswanathan, and R. P. Viswanath, Appl. Catal. B-Environ., 74, 307 (2007).

    [43] 26. M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, Chem. Mater., 17,6349 (2005).

    [44] J. N. Rebilly, P. W. Gardner, G. R. Darling, J. Bacsa, and M. J. Rosseinsky, Inorg.
    Chem., 47, 9390 (2008).

    [45] M. A. Newton, J. Evans, and B. E. Hayden, The Journal of Physical Chemistry B,104, 8548 (2000).

    [46] Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, and W. Choi, Appl. Catal.
    B-Environ., 91, 355 (2009).

    [47] F. Dong, H. Q. Wang, and Z. B. Wu, J. Phys. Chem. C, 113, 16717 (2009).

    [48] J. Wang et al, Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts, JACS, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE