| 研究生: |
李明賢 Li, Ming-Shian |
|---|---|
| 論文名稱: |
液晶聚合物薄膜光子晶體之研究及其應用 Studies of photonic crystals based on polymer dispersed liquid crystal films and their applications |
| 指導教授: |
傅永貴
Fuh, Ying-Guey Andy |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 全像液晶聚合物薄膜 、光子晶體 、超稜鏡 、負折射 、雷射振動偵測元件 |
| 外文關鍵詞: | Holographic polymer dispersed liquid crystal, Photonic crystal, Superprism, Negative refraction, Laser-beam vibration sensor |
| 相關次數: | 點閱:116 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人造具可見光尺度的結構(如光子晶體及準光子晶體)在近年受到科學家積極地
研究,光子晶體具有異常的折射特性,如:負折射、超稜鏡及自我準直效應,由於準光子晶體具多重旋轉對稱性,使其具均向性的光子晶體能隙。本論文研究兩個主題,其一為研究二維正方晶格光子晶體結構其光學及光電特性;另一為準光子晶體及多重連續曝光繞射光柵之製作並研究其繞射特性。
本論文第一部分研究利用全像液晶聚合物薄膜製作二維正方晶格光子晶體結構
並探討其光學及光電特性。實驗中利用二道光干涉在二次曝光下來製作二維光子晶體結構,兩道對打光與樣品夾45°進行第一次曝光,接下來將樣品轉90°進行第二次曝光,形成的光子晶體結構藉由掃描式電子顯微鏡來拍攝,並與理論計算結構相符。實驗結果證實入射可見光在特定入射角度下其具有超稜鏡現象及負折射,並與模擬結果一致,並且發現其負折射效率可經由電場來調控。
本論文第二部分研究利用全像液晶聚合物薄膜製作準光子晶體及多重連續曝光
繞射光柵(CMEDG)。實驗中將樣品固定在旋轉平台上以z 軸為軸心,x-y 平面上作旋轉。準光子晶體使用二道光干涉以每次旋轉20°進行十八次曝光,而多重連續曝光繞射光柵以十八次曝光/非曝光來製作,以曝光/非曝光作為一個週期,其曝光及非曝光角度為10°。製作出的結構在電子顯微鏡的觀察下,沿著結構中心往外具弧形波紋結構。實驗中並觀測到由正向入射偵測至樣品產生的繞射圖樣與入射光偵測的位置有關,可繞射出十八個弧形或者部份弧形,其應用可做為雷射振動偵測元件,此偵測元件的靈敏度約為100 μm。對於準光子晶體,其繞射圖樣與偵測位置無關。
Artificial mesoscale structures in the order of visible light wavelength, such as photonic crystals (PCs) and photonic quasi-crystals (PQCs), have been extensively investigated in recent years. PCs possesses unusual refraction effects such as negative refraction, superprism effect, and beam self-collimation; while, PQCs have isotropic photonic bandgap due to the higher rotational symmetry. This thesis studies two topics; the first is the study of optical/electro-optical properties of two-dimensional (2-D) square lattice (SL) PCs, and the other is the fabrications and diffraction characteristics of a PQC and a continuous multiple exposure diffraction grating (CMEDG).
The first part of this thesis investigates the fabrication of the 2-D SL PCs and their optical/electro-optical properties are then studied. The PCs are based on polymer-dispersed liquid crystals (PDLC) that are formed using two-beam interference with double exposures. To make the first holographic exposure, two counter propagating beams are incident onto the sample at an incident angle of 45°, and the sample is then rotated clockwise by an angle of 90° to perform the second holographic exposure. The PC structure is observed using a scanning electron microscope, and found to match with the theoretical interference pattern. The results of optical/electro-optical studies demonstrate that superprism and negative refraction effects occur at certain incident angles over a range of frequencies, and are consistent with the simulated ones. Moreover, the negative refraction efficiency is electrically controllable.
The second part of the thesis discusses PQC and CMEDG that are fabricated holographically on PDLC films using two-beam interference with multiple exposures. In fabrication, the sample revolves a circle on a rotation stage and rotates on the x-y plane around the z-axis. The PQC is formed by point-by-point 18-exposure of two-beam interference with the sample being rotated with 20°; while, the CMEDG is fabricated by exposing a PDLC film to 18 repeated exposure/non-exposure cycles with an angular step of ~10°/10°. The formed structure of the sample is analyzed using a scanning electron microscope and shows arc-ripples around the center. From the diffraction patterns of the formed grating obtained using a normally incident laser beam, some or all of the 18 recorded arc beams can be reconstructed, as determined by the probing location. Thus, it can be applied for use as a beam-vibration sensor for a laser. The sensitivity of the sample as a beam vibration sensor is measured to be ~100 μm. However, the reconstruction from PQC is not sensitive to the probing location.
1. J. Tian, M. Tan, M. Qiu, C. G. Ribbing, Y.-Z. Liu, D.-Z. Zhang, and Z.-Y. Li, “Direct characterization of focusing light by negative refraction in a photonic crystals flat lens”, Appl. Phys. Lett. 93, 191114 (2009).
2. S.-T. Wu, M. S. Li and A. Y.-G. Fuh, “Unusual refractions in photonic crystals based on polymer-dispersed liquid crystal films”, Appl. Phys. Lett. 91, 251117 (2007).
3. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C. J. Summers, M. Abashin,and Y. Fainman, Appl. Phys. Lett. 90, 041113 (2007).
4. S. Foteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals”, Phys. Rev. B 67, 235107 (2003).
5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Superprism phenomena in photonic crystals”, Phys. Rev. B 58, R10096 (1998).
6. S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications”, Appl. Phys. Lett. 93, 261103 (2008).
7. M. S. Li, S. T. Wu, and A. Y.-G. Fuh, “Superprism phenomenon based on holographic polymer dispersed liquid crystal films”, Appl. Phys. Lett. 88, 091109 (2006).
8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals”, Appl. Phys. Lett. 74, 1212 (1999).
9. A. Kim, K. B. Chung, and J. W. Wu, “Control of self-collimated Bloch waves by partially flat equifrequency contours in photonic crystals”, Appl. Phys. Lett. 89, 251120 (2006).
10. J. Mizuguchi, Y. Tanaka, S. Tamura, and M. Notomi, “Focusing of light in a three-dimensional cubic photonic crystal”, Phys. Rev. B 67, 075109 (2003).
11. R. Iliew, C. Etrich, and F. Lederer, “Self-collimation of light in three-dimensional photonic crystlas”, Opt. Express 13, 7076 (2005).
12. X. L. Yang, L. Z. Cai, Y. R. Wang and Q. Liu, “Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices”, Opt. Comm. 218, 325 (2003).
13. X. L. Yang, L. Z. Cai, Y. R. Wang and Q. Liu, “Interference of umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices”, Opt. Lett. 28, 453 (2003).
14. L. Z. Cai, X. L. Yang and Y. R. Wang, “Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams”, J. Opt. Soc. Am. A 19, 2238 (2002).
15. L. Z. Cai, X. L. Yang and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams”, Opt. Lett. 27, 900 (2002).
16. W. Mao, G. Liang, H. Zou, R. Zhang, and H. Wang, “Design and fabrication of two-dimensional holographic photonic quasi crystals with high-order symmetries”, J. Opt. Soc. Am. B 23, 2046 (2006).
17. N. D. Lai, J. H. Lin, Y. Y. Hung, and C. C. Hsu, “Fabrication of two- and three-dimensional quasi-periodic structures with 12-fold symmetry by interference technique”, Opt. Exp. 14, 10746 (2006).
18. Y. Liu, S. Liu and X. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography”, Appl. Opt. 45, 480 (2006).
19. V. G. Chigrinov, “Liquid crystal devices-Physics and Applications”, Artech House, 1st ed., 1999.
20. I. C. Khoo, “Liquid crystals”, John Wiley & Sons, 2nd ed., 2007.
21. T. Scharf, “Polarized light in liquid crystals and polymers”, John Wiley & Sons, 2007.
22. Lev M. Blinov, “Structure and properties of Liquid Crystals”, Springer, 2010.
23. P. P. Crooker, H.-S. Kitzerow and C. Bahr, “Chiarality in Liquid crystals”, Springer, 2001.
24. H. J. Cole and M. N. Pivenko, “Liquid crystal ‘blue phases’ with a wide temperature range”, Nature 436, 997 (2005).
25. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases”, Nature Material 1, 64 (2002).
26. P. R. Gerber, “Electro-Optical Effects of a Small-Pitch Blue-Phase System”, Mol. Cryst. Liq. Cryst. 116, 197 (1985).
27. S.-Y. Lu and L.-C. Chien, “Electrically switched color with polymer-stabilized blue-phase liquid crystals”, Opt. Lett. 35, 562 (2010).
28. P. S. Drzaic, “Liquid crystal dispersions”, World Scientific, 1995.
29. S. P. Gorkhali, J. Qi, and G. P. Crawford, “Switchable quasi-crystal structures with five-, seven-, and ninefold symmetries”, J. Opt. Soc. Am. B 23, 149 (2006).
30. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs)”, Annu. Rev. Mater. Sci. 30, 83 (2000).
31. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang and W. Ji, “Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals”, Appl. Phys. Lett. 97, 081101 (2010).
32. M. Date, Y. Takeuchi and K. Kato, “A memory-type holographic polymer dispersed liquid crystal (HPDLC) reflective display device”, J. Phys. D: Appl. Phys. 31, 2225 (1998).
33. D. R. Cairns, C. C. Bowley, S. Danworaphong, A. K. Fontecchio, G. P. Crawford, L. Li, and D. M. Farris, “Optical strain characteristics of holographically formed polymer-dispersed liquid crystal films”, Appl. Phys. Lett. 77, 2677 (2000).
34. S. Yeralan, J. Gunther, D. Ritums, R. Cid, and M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774 (2002).
35. L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE, 4107, 46–58 (2000).
36. S. T. Wu and Andy Y. G. Fuh, “Lasing in photonic crystals based on dye-doped Holographic polymer-dispersed liquid crystal reflection gratings”, Jpn. J. Appl. Phys. 44, 977 (2005).
37. P. N. Prasad, “Nanophotonics”, John Wiley & Sons, 2004.
38. V. A. Markel, and T. F. George, “Optics of Nanostructured Materials”, John Wiley & Sons, 2001.
39. D. W. prather, S. Shi, A. Sharkawy, J. Murakowski, and G. J. Schneider, “Photonic crystals-Theory, Applications, and Fabrication”, John Wiley & Sons, 2009.
40. Jean-Michel Lourtioz, Henri Benisty, Vincent Berger, Jeam-Michel Gerard, Daniel Maystre, and Alexis Tchelnokov, “Photonic crystals-Towards Nanoscale Photonic Devices”, Springer, 2005.
41. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement”, J. Appl. Phys. 75, 1896 (1994).
42. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals”, Opt. Express 4, 167 (1999).
43. C.-Ta and T.-H. Lin, “Polarization-tunable chiral nematic liquid crystal lasing”, J. Appl. Phys. 107,123102 (2010).
44. W. Gao, A. Muñoz, P. Palffy-Muhoray, B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II”, Nature Material 1, 111 (2002).
45. T. Tanabe, A. Shinya, E.i Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode”, Appl. Phys. Lett. 91, 021110 (2007).
46. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs”, Phys. Rev. Lett. 87, 253902 (2001).
47. P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing Defects in 3D Photonic Crystals: State of the Art”, Adv. Mater. 18, 2665 (2006).
48. Y. Liu, X. Hu, D. Zhang, B. Cheng, D. Zhang and Q. Meng, “Subpicosecond optical switching in polystyrene opal”, Appl. Phys. Lett. 86, 151102 (2005).
49. S. L. Kuai, G. Bader and P. V. Ashrita, “Tunable electrochromic photonic crystals”, Appl. Phys. Lett. 86, 221110 (2005).
50. L.-J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, “Beam steering in planar photonic crystal based on its anomalous dispersive properties”, J. Zhejiang Univ. SCI. A 7, 45 (2006).
51. M. Deubel, M. Wegener, A. Kaso, S. John, “Direct laser writing and characterization of “Slanted Pore” Photonic Crystals”, Appl. Phys. Lett. 85, 1895 (2004).
52. G. M. Gratson, F. Garcia-Santamaria, V. Lousse, M. Xu, S. H. Fan, J. A. Lewis, P. V. Braun, “Direct-Write Assembly of Three-Dimensional Photonic Crystals: Conversion of Polymer Scaffolds to Silicon Hollow –Woodpile structure”, Adv. Mater. 18, 461 (2006).
53. S. G. Johnson and J. D. Joannopoulous, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap”, Appl. Phys. Lett. 77, 3490 (2000).
54. M. J. Escuti, and G. P. Crawford, “Holographic photonic crystals”, Opt. Eng. 43, 1973, (2004).
55. J. H. Moon, J. Ford, and S. Yang, “Fabrication three-dimensional polymeric photonic structures by multi-beam interference lithography”, Polym. Adv. Tech. 17, 83 (2006).
56. M. S. Li, S. Y. Huang, S. T. Wu, H.C. Lin and Andy Y.-G. Fuh, “Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals”, Appl. Phys. B 101, 245 (2010).
57. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by mulit-exposure of two-beam interference of two-beam interference technique”, Opt. Express 13, 9605 (2005).
58. Y. Ono, “All Fourteen Bravais Lattices Can Be Fabricated by Two-Beam Holographic Lithography”, Digital Holography and Three-Dimensional Imaging, April 30, 2009, Vancouver, Canada.
59. M. J. Escuti, J. Qi, and G. P. Crawford, “Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals”, Opt. Lett. 28, 522 (2003).
60. M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: Threshold behavior and morphology”, Appl. Phys. Lett. 83, 1331 (2003).
61. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic Formation of Electro-Optical Polymer-Liquid Crystal Photonic Crystals”, Adv. Mater. 14, 187 (2002).
62. M. Escuti and G. P. Crawford, “Mesoscale Three Dimensional Lattices Formed in Polymer Dispersed Liquid Crystals: A Diamond-Like Face Centered Cubic”, Mol. Cryst. Liq. Cryst. 421, 23 (2004).
63. S. P. Gorkhali, J. Qi and G. P. Crawford, “Electrically switchable mesoscale Penrose quasicrystal structure”, Appl. Phys. Lett. 86, 011110 (2005).
64. W. Y. Tam, “Icosahedral quasicrystals by optical interference holography”, Appl. Phys. Lett. 89, 251111 (2006).
65. M. S. Li, S. T. Wu, and A. Y.-G. Fuh, “Sensor for monitoring the vibration of a laser beam based on holographic polymer dispersed liquid crystal films”, Opt. Express 18, 26300 (2010).
66. X. Zhang, Z.-Q. Zhang, and C. T. Chan, “Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals”, Phys. Rev. B 63, 081105 (2001).
67. M. Hase, H. Miyazaki, M. Egashira, N. Shinya, K. M. Kojima, and S.-i. Uchida, “Isotropic photonic band gap and anisotropic structures in transmission spectra of two-dimensional fivefold and eightfold symmetric quasiperiodic photonic crystals”, Phys. Rev. B 66, 214205 (2002).
68. P. C. Mehta and V. V. Rampal, “Lasers and holography”, World Scientific, 1993
69. P. Hariharan, “Basics of holography”, University Press & Cambridge, 1984.
70. E. Cassan, D. Bernier, G. Maire, D. Marris-Morini, and L. Vivien, “Bloch wave decomposition for prediction of strong light coupling efficiency into extended planar photonic crystals”, J. Opt. Soc. Am. B 24, 1211 (2007).
71. B. Lombardet, L. A. Dunbar, R. Ferrmi, and R. Houdre, ”Fourier analysis of Bloch wave propagation in photonic crystals”, J. Opt. Soc. Am. B 22, 1179 (2005).
72. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami,” Superprism Phenomena in Photonic Crystals: Toward Microscale Lightwave Circuits”, J. Lightwave Technol. 17, 2032 (1999).
73. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Superprism phenomena in photonic crystals”, Phys. Rev. B 58, R10096 (1998).
74. A. Taflove, and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method”, Artech House, 3rd ed., 2005.
75. D. C. Neckers, “Rose Bengal”, J. Photochem. Photobiol. A: Chem. 47, 1 (1989).
76. D. Felbacq and R. Smaâli, “Bloch Modes Dressed by Evanescent Waves and the Generalized Goos-Hänchen Effect in Photonic Crystals”, Phys. Rev. Lett. 92, 193902 (2004).
77. J. Qi, M. Desarkar, G. T. Warren, and G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals”, J. Appl. Phys. 91, 4795 (2002).
78. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals”, Appl. Phys. Lett. 64, 1074 (1994).
79. P. Yeh, “Introduction to Photorefractive Nonlinear Optics”, Wiley & New York, 1993
80. H. Gao, H. Pu, B. Gao, D. Yin, J. Liu, and F. Gan, “Electrically switchable multiple volume hologram recording in polymer-dispersed liquid-crystal films”, Appl. Phys. Lett. 95, 201105 (2009).