| 研究生: |
吳孟璇 Wu, Meng-Hsuan |
|---|---|
| 論文名稱: |
微結構之黏著接觸問題數值分析 Numerical Analysis of Adhesive Contact of Micro-Structures |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 微結構 、黏著接觸 、勁度 、最大拉拔力 、有效黏著能 |
| 外文關鍵詞: | microstructure, adhesive contact, stiffness, maximum pull-off force, effective work of adhesion |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討具微結構之彈性體與剛性球體之黏著與無黏著接觸問題。建立三維有限元素數值模型,以彈簧元素模擬微結構之力學行為,同時以自定義黏著元素描述表面之間黏著應力,分析表面具微結構之彈性體在小變形情況下之黏著與無黏著接觸行為。探討微結構深寬比 、微結構寬度 及排列面密度 在對於整體接觸勁度,以及最大拉拔力與有效黏著能之影響。模擬結果分別與前人之分析結果及實驗結果相互比較。
In this research, we studied the adhesive and non-adhesive contact problems of rigid sphere and the elastic solid with surface microstructures. We established 3D finite element models by using spring elements, which described the behavior of microstructures. Also, the adhesive stress between two surfaces was implemented by user-defined cohesive element. The behavior of elastic solid with surface microstructures under small deformation was analyzed. The influence of the aspect ratio , column width , and area density on the effective stiffness of contact was discussed, as well as maximum pull-off force and effective work of adhesion. The numerical results were compared with the analysis and the experimental data in literature.
[1] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing & R. J. F ull, “Adhesive force of a single gecko foot-hair”, Nature, 405, 681–685 (2000).
[2] N. J. Glassmaker, A. Jagota, C.-Y. Hui and J. Kim, “Design of biomimetic fibrillar interfaces: 1. Making contact”, Journal of The Royal Society Interface, 1, 23-33 (2004).
[3] C.-Y. Hui, N. J. Glassmaker, T. Tang and A. Jagota, “Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion”, Journal of The Royal Society Interface, 1, 35-48 (2004).
[4] T. Tang, C.-Y. Hui and N. J. Glassmaker, “Can a fibrillar interface be stronger and tougher than a non-fibrillar one?”, Journal of The Royal Society Interface, 2, 505-516 (2005).
[5] D. S. Dugdale, “Yielding of steel sheets containing slits” J. Mech. Phys. Solids, 8, 100-104 (1960).
[6] G. I. Barenblatt, “Mathematical theory of equilibrium cracks in brittle fracture”, Adv. Appl. Mech., 7, 55-129 (1962).
[7] M. Schargott, V. L. Popov, S. Gorb, “Spring model of biological attachment pads”, Journal of Theoretical Biology, 243, 48-53 (2006).
[8] Y. Jiao, S. Gorb, M. Scherge, “Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta)”, J. Exp. Biol. 203 , 12, 1887–1895 (2000).
[9] C. Greiner, A. del Campo and E. Arzt, “Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pollar Radius, Aspect Ratio, and Preload”, Langmuir, 23(7), 3495-3502 (2007).
[10] K. L. Johnson, Contact Mechanics, Cambridge University Press (1985).
[11] K. L. Johnson, K. Kendall and A. D. Roberts, “Surface energy and the contact of elastic solids”, Proceedings of the Royal Society of London, Ser. A 324, 301 (1971).
[12] D. Tabor, “Interaction between surface: adhesion and friction”, Surface Physics of Material, Vol, II, Chap.10, Academic Press (1975).
[13] D. Maugis, “Adhesion of Sphere: The JKR-DMT Transition Using a Dugdale Model”, Journal of Colloid and Interface Science. Vol 150 No.1. April 1992, pp243-269 (1992).
[14] 鄭長貴,“具表面微結構之彈性體接觸問題數值分析”,國立成功大學土木工程學系,碩士論文 (2009).
[15] ABAQUS 6.8 User’s Manual.