簡易檢索 / 詳目顯示

研究生: 張峰豪
Chang, Feng-Hao
論文名稱: 1,2,4-三氮唑-3-羧酸對銅/氧化銦錫的腐蝕抑制研究
Corrosion-inhibition of Cu/ITO with 1,2,4-Triazole-3-Carboxylic Acid
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 1,2,4-三氮唑-3-羧酸腐蝕抑制
外文關鍵詞: 1,2,4-triazole-3-carboxylic acid, Cu, Corrosion-inhibition
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是藉由電沉積反應將二價銅離子還原鍍到氧化銦錫(ITO)導電玻璃上,再將1,2,4-三氮唑-3-羧酸(1,2,4-triazole-3-carboxylic acid,TCA)電吸附到銅表面,以抑制銅表面氧化。
    本論文使用傅里葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy)、拉曼光譜(Raman Spectroscopy)、X光繞射(X-Ray Diffraction)、二次離子質譜(Secondary Ion Mass Spectroscopy)、化學分析電子能譜(Electron Spectroscopy for Chemical Analysis)與能量分散光譜(Energy Dispersive Spectroscopy)分析樣品的結構、晶相、元素成分與分子組成;使用穿透式電子顯微鏡(Transmission Electron Microscope)與掃描式電子顯微鏡(Scanning Electron Microscope)觀察樣品的表面形貌與晶體結構;使用循環伏安法(Cyclic Voltammetry)與電化學阻抗譜(Electrochemical Impedance Spectroscopy)測量樣品在1 %氯化鈉水溶液中的腐蝕抑制效果。
    在X光繞射圖與穿透式電子顯微鏡的電子顯微影像中,確認單晶銅的生成。在掃描式電子顯微鏡的電子顯微影像中,發現Cu顆粒以“群落”的方式分布在ITO導電玻璃上,厚度為2 μm到5 μm。在傅里葉轉換紅外光譜、二次離子質譜、化學分析電子能譜與能量分散光譜的研究中,確認TCA電吸附到Cu/ITO表面。
    在腐蝕反應的研究中,TCA/Cu/ITO的第一個氧化峰之積分面積明顯小於Cu/ITO的第一個氧化峰,而TCA/Cu/ITO的第二個氧化峰之電位相較於Cu/ITO的第二個氧化峰大0.129 V。在電化學阻抗譜的研究中,TCA/Cu/ITO的Rct相較於Cu/ITO大670 Ω cm2,約為8.5 %。
    實驗顯示,1,2,4-三氮唑-3-羧酸於銅表面所形成的薄膜在1 %氯化鈉水溶液中具有良好的腐蝕抑制效果,使有薄膜的銅相較於沒薄膜的銅更不容易被氧化腐蝕。

    In this study, Cu particles were deposited on ITO film with potentiostatic electrodeposition, followed by electrochemical adsorption of 1,2,4-triazole-3-carboxylic acid (TCA) on the Cu in methanol/sodium hydroxide solution by cyclic voltammetry, expecting to enhance the oxidative resistance of Cu. Interatomic bonding, crystal phase and element composition of the Cu/ITO and TCA/Cu/ITO specimens were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), secondary son mass spectroscopy (SIMS), electron spectroscopy for chemical analysis (ESCA) and energy dispersive spectroscopy (EDS). In addition, the surface morphology and crystal structure were measured with transmission electron microscope (TEM) and scanning electron microscope (SEM). The efficiency of Cu corrosion inhibition by adsorbed TCA in 1 % sodium chloride solution was evaluated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The TCA film showed its oxidative inhibition ability by suppressing the Cu oxidation current and/or by increasing the Cu oxidation voltage. We infer that the corrosion inhibition ability of TCA could be due to decreased electron transfer between the metal and solution.

    第一章 緒論..........................................................................................................................1 1.1 腐蝕(Corrosion)........................................................................................................1 1.2 腐蝕抑制劑(Corrosion Inhibitor).............................................................................2 1.3 三唑類分子(Triazoles)..............................................................................................3 1.4 研究動機...................................................................................................................3 第二章 實驗方法與儀器分析原理....................................................................................11 2.1 實驗藥品與實驗儀器.............................................................................................11 2.2 實驗儀器原理.........................................................................................................13 2.2.1 電化學分析法..............................................................................................13 2.2.2 傅里葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy,FTIR).15 2.2.3 拉曼光譜(Raman Spectroscopy).................................................................16 2.2.4 X光繞射(X-Ray Diffraction,XRD)..........................................................17 2.2.5 穿透式電子顯微鏡(Transmission Electron Microscope,TEM)...............19 2.2.6 二次離子質譜(Secondary Ion Mass Spectroscopy,SIMS).......................21 2.2.7 化學分析電子能譜(Electron Spectroscopy for Chemical Analysis,ESCA)-X-¬光光電子能譜(X-ray Photoelectron Spectroscopy)........................................22 2.2.8 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)......................23 2.2.9 能量分散光譜(Energy Dispersive Spectroscopy,EDS)............................24 2.2.10 電化學阻抗譜(Electrochemical Impedance Spectroscopy,EIS)..............25 2.3 製備樣品.................................................................................................................28 2.3.1 工作電極前處理............................................................................................28 2.3.2 電沉積反應(Electrodeposition Reaction)......................................................29 2.3.3 電吸附反應(Electrosorption Reaction).........................................................30 2.3.4 腐蝕反應(Corrosion Reaction)......................................................................31 第三章 結果與討論............................................................................................................32 3.1 電化學反應...........................................................................................................32 3.2 傅里葉轉換紅外光譜研究:TCA的化學吸附..................................................36 3.3 拉曼光譜研究:Cu的氧化..................................................................................41 3.4 X光繞射:晶相研究...........................................................................................45 3.5 穿透式電子顯微鏡:Cu顆粒形貌與原子排列..................................................47 3.6 二次離子質譜:TCA的化學吸附......................................................................51 3.7 化學分析電子能譜-X-光光電子能譜:表面原子偵測與原子組成...............53 3.8 掃描式電子顯微鏡:Cu鍍膜形貌研究..............................................................59 3.9 腐蝕反應...............................................................................................................63 3.10 電化學阻抗譜.......................................................................................................66 第四章 結論........................................................................................................................70 參考文獻..............................................................................................................................71 附錄......................................................................................................................................74

    1. 張裕祺, 科學月刊 2014, 45, 175-177.
    2. 風力發電扣件表面處理技術應用.
    http://www.twtia.org.tw/upload/4118/20131211642284524.pdf
    3. Finšgar, M.; Milošev, I. Corrosion Science 2010, 52, 2737-2749.
    4. Fang, B. -S.; Olson, C. G.; Lynch, D. W. Surface Science 1986, 176, 476-490.
    5. Kim, J. J.; Kim, S. -K.; Bae, J. -U. Thin Solid Films 2002, 415, 101-107.
    6. Fox, P. G.; Bradley, P. A. Corrosion Science 1980, 20, 643-649.
    7. Rajkumar, G.; Sethuraman, M. G. Thin Solid Films 2014, 562, 32-36.
    8. Rajkumar, G.; Sethuraman, M. G. Research on Chemical Intermediates 2015, 41, 8041-8055.
    9. Rao, B. V. A.; Reddy, M. N.; Sreedhar, B. Progress in Organic Coatings 2014, 77, 202-212.
    10. Kreysa, G.; Ota, K. -I.; Savinell, R. F. Encyclopedia of Applied Electrochemistry, Springer Verlag, 2014, 285-289.
    11. Linear Sweep and Cyclic Voltametry: The Principles.
    http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles
    12. 郭豔如碩士論文, 國立交通大學應用化學所 2009.
    13. Raman光譜原理及應用.
    http://drr.lib.ksu.edu.tw/bitstream/987654321/3320/3/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E4%B9%8B%E5%8E%9F%E7%90%86%E8%88%87%E6%87%89%E7%94%A8.pdf
    14. Raman spectroscopy.
    https://en.wikipedia.org/wiki/Raman_spectroscopy
    15. 林麗娟, 工業材料 1994, 86, 100-109.
    16. 鄭信民; 林麗娟, 工業材料 2002, 181, 100-108.
    17. 林昆霖, 奈米通訊 2013, 20, 34-38.
    18. 陳季南, 科儀新知 1995, 17, 68-81.
    19. Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis, Brooks ole, 2007, 593.
    20. 陳力俊, 材料電子顯微鏡學, 全華圖書, 1990, 1-20.
    21. X光能譜分析儀.
    http://140.120.11.121/user/kyc/online/X-ray/X-ray.htm
    22. 黃永盛, 科儀新知 1995, 17, 36-54.
    23. 王勝民碩士論文, 國立成功大學化學所 2014.
    24. Wu, X.; Ma, H.; Chen, S.; Xu, Z.; Sui, A. Journal of The Electrochemical Society 1999, 146, 1847-1853.
    25. 儀測科技-電化學阻抗頻譜(EIS)的基本原理.
    http://w.pic.com.tw/newsdetail.php?id=1169
    26. 电化学原理与方法-电化学阻抗谱.
    http://wenku.baidu.com/view/dfd66a70f46527d3240ce045.html?re=view
    27. Yurdakul, Ş.; Tanrıbuyurdu, S. Structural Chemistry 2012, 23, 433-440.
    28. Sexton, B. A. Journal of Vacuum Science & Technology 1980, 17, 141-142.
    29. Buchholz, M.; Xu, M.; Noei, H.; Weidler, P.; Nefedov, A.; Fink, K.; Wang, W.; Wöll, C. Surface Science 2016, 643, 117-123.
    30. Lu, Y.; Zhang, N.; Zhao, Q.; Liang, J.; Chen, J. Nanoscale 2015, 7, 2770-2776.
    31. Rashad, M.; Rüsing, M.; Berth, G.; Lischka, K.; Pawlis, A. Journal of Nanomaterials 2013, 2013, ID 714853.
    32. Liu, Y.; Ren, F.; Shen, S.; Fu, Y.; Chen, C.; Liu, C.; Xing, Z.; Liu, D.; Xiao, X.; Wu, W.; Zheng, X.; Liu, Y.; Jiang, C. Applied Physics Letters 2015, 106, ID 123901.
    33. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics, 1995.
    34. NIST X-ray Photoelectron Spectroscopy Database.
    http://srdata.nist.gov/xps/
    35. Rajkumar, G.; Sethuraman, M. G. Polymer Bulletin 2014, 71, 3249-3260.
    36. Sudheer; Quraishi, M. A. Corrosion Science 2013, 70, 161-169.

    下載圖示 校內:2021-07-20公開
    校外:2021-07-20公開
    QR CODE