簡易檢索 / 詳目顯示

研究生: 張育銜
Chang, Yu-Hsien
論文名稱: 介白素十七在雷射誘導的脈絡膜血管新生之老鼠模式中的保護性作用
The protective effect of IL-17A in laser-induced choroidal neovascularization mouse model
指導教授: 許育祥
Hsu, Yu-Hsiang
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 59
中文關鍵詞: 老年性黃斑部病變介白素十七細胞激素脈絡膜血管新生氧化壓力
外文關鍵詞: Age-related macular degeneration (AMD), Interleukin-17A, Cytokines, choroidal neovascularization (CNV), Oxidative stress.
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 老年性黃斑部病變是導致老年人口失明的主要原因之一,在臨床上分為乾性與濕性的病變。濕性黃斑部病變主要病徵為脈絡膜的新生血管,其特徵為血管從脈絡膜增生並進入視網膜,這些血管會因為血液的滲漏,進而導致中央視力的缺失。抑制血管新生因子的標靶藥物是目前治療濕性黃斑部病變的主要方式之一,然而近期文獻指出長期抑制血管新生因子的產生,可能會導致視網膜內的神經細胞死亡。介白素十七(Interleukin-17A; IL-17A)為多功能性的細胞激素,它在宿主防禦病原體中有著至關重要的作用。過去文獻顯示黃斑部病變病患血清相較於健康人血清中有表達較高的IL-17A,但IL-17A在老年性黃斑部病變之病理機制中的功能並不明確,因此我的研究將聚焦探討IL-17A在老年性黃斑部病變中扮演的角色。我們建立雷射誘導的脈絡膜血管新生之疾病小鼠模式,利用免疫螢光染色及流式細胞儀分析發現疾病小鼠中表達高量的IL-17A在雷射所誘導之眼睛患部區域。在此疾病模式,運用螢光血管造影分析發現IL-17A基因剔除鼠具有較大範圍的新生血管區域。在流式細胞儀分析中發現IL-17A基因剔除鼠相對於野生型小鼠,會影響適應性免疫細胞的族群並且增加巨噬細胞浸潤至視網膜內的數量。即時聚合酶連鎖反應分析發現IL-17A基因剔除鼠相對於野生型小鼠,視網膜中會有較多的促發炎性細胞因子IL-6。在體外細胞實驗中,我們發現IL-17A透過Nrf2路徑來誘導抗氧化蛋白HO-1的表達。IL-17A也可以減緩由氧化壓力所引起的屏障功能損害。我們實驗結果證明IL-17A在雷射所誘導的脈絡膜血管新生疾病模式中可以扮演著保護性的角色。此研究的發現將對未來老年性黃斑部病變的治療提供新的機制與方向。

    Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in the elderly. The two clinical classifications of AMD are dry and wet AMD. Wet AMD is associated with choroidal neovascularization (CNV), which is characterized by the proliferation of blood vessels that eventually leak fluid, leading to central vision loss. Anti-VEGF therapy has become a standard treatment for wet AMD. However, recent study indicated that long-term VEGFA inhibition may cause retinal cell death. Interleukin-17A (IL-17A), a pleiotropic cytokine secreted primarily by Th17 cells, has been proved to be involved in the microenvironment of certain autoimmune diseases. Previous studies indicated that the serum IL-17A level is higher in AMD patients than in healthy individuals. However, the effect and mechanism of IL-17A in AMD progression are still unknown. In this study, we aimed to investigate how IL-17A regulates choroidal neovascularization development and verify the effects of IL-17A in laser-induced CNV mouse model, which mimicked wet AMD disease. Immunofluorescence staining and fluorescence-activated cell sorting (FACS) analysis showed that higher level of IL-17A was detected in the retina-choroidal region of mice in laser-induced CNV model. Fluorescence angiography analysis showed that IL-17A deficiency mice had larger CNV lesions compared with wildtype (WT) mice in laser-induced CNV model. FACS also showed that IL-17A deficiency influenced the adaptive immunity cell population and increased macrophage infiltration into retina after laser injury. After laser, the expression of IL-6 was elevated in eyes of IL-17A deficiency mice compared with in the WT mice. In vitro, IL-17A induced antioxidant protein HO-1 through regulating Nrf-2 pathway. IL-17A facilitated the repairment of oxidative stress-induced barrier dysfunction. Taken together, our findings provide a new insight into the protective mechanisms of IL-17A that might serve as therapeutic targets for treating wet AMD.

    I. 中文摘要 I II. Abstract II III. Acknowledgement IV IV. Abbreviation V V. Content VI VI. Introduction 1 1. Aged-related macular degeneration (AMD) 1 2. Retinal structure 3 3. Blood retinal barrier (BRB) 4 4. Oxidative stress 4 5. Cytokine 5 6. Interleukin-17A (IL-17A) 6 7. Role of IL-17A in the ocular disease 7 8. Laser-induced CNV mouse model 7 VII. Research motivation 9 VIII. Materials and Methods 10 1. Animal 10 2. Laser-induced CNV mouse model and fluorescence angiography 10 3. Isolation of ocular-infiltrating cells, splenocyte, and lymphocyte 10 4. Fluorescence-activated cell sorting (FACS) analysis and detection of cytokine-expressing lymphocytes 11 5. H&E staining and immunofluorescence staining 12 6. RNA extraction and reverse-transcription-RCR (RT-PCR) 12 7. Quantification Real Time PCR (RT-qPCR) 13 8. Western blotting 13 9. Cell culture 14 10. Treatment in retinal pigment epithelial cell line 14 11. Cell viability assay 15 12. Permeability assay 15 13. Statistical analysis 15 IX. Results 16 1. IL-17A was expressed on CNV lesion in laser-induced CNV mouse model 16 2. IL-17A deficiency exacerbated severity in laser-induced CNV mouse model 16 3. IL-17A deficiency couldn’t influence VEGFA expression in laser-induced CNV mouse model 17 4. Th17 cells were the main cellular source of IL-17A in laser-induced CNV mouse model 17 5. IL-17A-deficiency influenced T-reg, Th17, and γδ-T cell populations in the eyes but not in cervical lymph nodes 18 6. IL-17A-deficiency increased macrophage infiltration into the eyes 19 7. The gene expression of inflammatory cytokine in eyes of WT and IL-17A-deficiency mice after laser injury 19 8. IL-17A couldn’t influence the cell viability in ARPE-19 cells 20 9. IL-17A induced antioxidant protein HO-1 through Nrf-2 pathway 20 10. IL-17A facilitated the repairment of oxidative stress-induced barrier dysfunction 21 X. Discussion 22 XI. Tables 27 Table 1. Mouse primer sequences used for RT-qPCR 27 Table 2. Human primer sequences used for RT-qPCR 28 XII. Figures and figure legends 29 Figure 1. IL-17A expressed on CNV lesion in laser-induced CNV mouse model. 30 Figure 2. IL-17A deficiency exacerbated severity in laser-induced CNV mouse model. 31 Figure 3. IL-17A deficiency caused larger damage area on retinal structure in laser-induced CNV mouse model. 32 Figure 4. IL-17A deficiency couldn’t influence VEGFA expression in laser-induced CNV mouse model. 34 Figure 5. Cellular source of IL-17A in the laser-induced CNV mice. 36 Figure 6. IL-17A-deficiency couldn’t influence the cell population of T-reg, Th17 and γδ-T cells in the cervical lymph nodes. 38 Figure 7. IL-17A-deficiency influenced the cell population of T cells, T-reg, Th17 and γδ-T cells in the eyes. 40 Figure 8. IL-17A-deficiency increased macrophage infiltration into the eyes. 41 Figure 9. 7. The gene expression of inflammatory cytokine in eyes of WT and IL-17A-deficiency mice after laser injury. 42 Figure 10. IL-17A didn’t influence the cell viability in ARPE-19 cells. 43 Figure 11. IL-17A induced antioxidant protein HO-1 through Nrf-2 pathway. 45 Figure 12. IL-17A facilitated the repairment of oxidative stress-induced barrier dysfunction. 47 Figure 13. Working model of IL-17A in laser-induced CNV mouse model. 48 XIII. References 49

    1 Mehta, S. Age-Related Macular Degeneration. Primary Care: Clinics in Office Practice 42, 377-391, doi:https://doi.org/10.1016/j.pop.2015.05.009 (2015).
    2 Friedman, D. S. et al. Prevalence of age-related macular degeneration in the United States. Archives of ophthalmology (Chicago, Ill. : 1960) 122, 564-572, doi:10.1001/archopht.122.4.564 (2004).
    3 Tielsch, J. M., Javitt, J. C., Coleman, A., Katz, J. & Sommer, A. The prevalence of blindness and visual impairment among nursing home residents in Baltimore. The New England journal of medicine 332, 1205-1209, doi:10.1056/nejm199505043321806 (1995).
    4 Ferris, F. L., 3rd, Fine, S. L. & Hyman, L. Age-related macular degeneration and blindness due to neovascular maculopathy. Archives of ophthalmology (Chicago, Ill. : 1960) 102, 1640-1642, doi:10.1001/archopht.1984.01040031330019 (1984).
    5 Caprara, C. & Grimm, C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 31, 89-119, doi:10.1016/j.preteyeres.2011.11.003 (2012).
    6 Coleman, H. R., Chan, C. C., Ferris, F. L., 3rd & Chew, E. Y. Age-related macular degeneration. Lancet (London, England) 372, 1835-1845, doi:10.1016/s0140-6736(08)61759-6 (2008).
    7 Anand, R. et al. Risk factors associated with age-related macular degeneration - A case-control study in the Age-Related Eye Disease Study: Age-Related Eye Disease Study report number 3. Ophthalmology 107, 2224-2232 (2000).
    8 Smith, W. et al. Risk factors for age related macular degeneration - Pooled findings from three continents. Ophthalmology 108, 697-704, doi:10.1016/s0161-6420(00)00580-7 (2001).
    9 Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization--verteporfin in photodynamic therapy report 2. American journal of ophthalmology 131, 541-560, doi:10.1016/s0002-9394(01)00967-9 (2001).
    10 Bressler, N. M. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials-tap report 2. Archives of ophthalmology (Chicago, Ill. : 1960) 119, 198-207 (2001).
    11 Fogli, S. et al. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye (London, England) 32, 1010-1020, doi:10.1038/s41433-018-0021-7 (2018).
    12 Witmer, A. N., Vrensen, G., Van Noorden, C. J. F. & Schlingemann, R. O. Vascular endothelial growth factors and angiogenesis in eye disease. Progress in Retinal and Eye Research 22, 1-29, doi:10.1016/s1350-9462(02)00043-5 (2003).
    13 Rofagha, S., Bhisitkul, R. B., Boyer, D. S., Sadda, S. R. & Zhang, K. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP). Ophthalmology 120, 2292-2299, doi:10.1016/j.ophtha.2013.03.046 (2013).
    14 Scott, A. W. & Bressler, S. B. Long-term follow-up of vascular endothelial growth factor inhibitor therapy for neovascular age-related macular degeneration. Current opinion in ophthalmology 24, 190-196, doi:10.1097/ICU.0b013e32835fefee (2013).
    15 Long, D. et al. VEGF/VEGFR2 blockade does not cause retinal atrophy in AMD-relevant models. JCI insight 3, doi:10.1172/jci.insight.120231 (2018).
    16 Kurihara, T., Westenskow, P. D., Bravo, S., Aguilar, E. & Friedlander, M. Targeted deletion of Vegfa in adult mice induces vision loss. The Journal of clinical investigation 122, 4213-4217, doi:10.1172/jci65157 (2012).
    17 Grossniklaus, H. E., Geisert, E. E. & Nickerson, J. M. in Progress in Molecular Biology and Translational Science Vol. 134 (eds J. Fielding Hejtmancik & John M. Nickerson) 383-396 (Academic Press, 2015).
    18 Tsin, A., Betts-Obregon, B. & Grigsby, J. Visual cycle proteins: Structure, function, and roles in human retinal disease. The Journal of biological chemistry 293, 13016-13021, doi:10.1074/jbc.AW118.003228 (2018).
    19 Boulton, M. & Dayhaw-Barker, P. The role of the retinal pigment epithelium: Topographical variation and ageing changes. Eye 15, 384-389, doi:10.1038/eye.2001.141 (2001).
    20 Marneros, A. G. et al. Vascular endothelial growth factor expression in the retinal pigment epithelium is essential for choriocapillaris development and visual function. The American journal of pathology 167, 1451-1459, doi:10.1016/s0002-9440(10)61231-x (2005).
    21 Runkle, E. A. & Antonetti, D. A. The blood-retinal barrier: structure and functional significance. Methods in molecular biology (Clifton, N.J.) 686, 133-148, doi:10.1007/978-1-60761-938-3_5 (2011).
    22 Cunha-Vaz, J. The Bloo„ Retinal Barrier in Retinal Disease. European Ophthalmic Review 03, 105 (2009).
    23 Du, M. et al. Effects of modified LDL and HDL on retinal pigment epithelial cells: a role in diabetic retinopathy? Diabetologia 56, 2318-2328, doi:10.1007/s00125-013-2986-x (2013).
    24 Ray, P. D., Huang, B. W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular signalling 24, 981-990, doi:10.1016/j.cellsig.2012.01.008 (2012).
    25 Beatty, S., Koh, H. H., Henson, D. & Boulton, M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Survey of Ophthalmology 45, 115-134, doi:10.1016/s0039-6257(00)00140-5 (2000).
    26 Liang, F.-Q. & Godley, B. F. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76, 397-403, doi:10.1016/s0014-4835(03)00023-x (2003).
    27 Sachdeva, M. M., Cano, M. & Handa, J. T. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp Eye Res 119, 111-114, doi:10.1016/j.exer.2013.10.024 (2014).
    28 Cai, J. Y., Nelson, K. C., Wu, M., Sternberg, P. & Jones, D. P. Oxidative damage and protection of the RPE. Progress in Retinal and Eye Research 19, 205-221, doi:10.1016/s1350-9462(99)00009-9 (2000).
    29 Fang, Y. et al. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death. Scientific reports 6, 21018, doi:10.1038/srep21018 (2016).
    30 Thichanpiang, P., Harper, S. J., Wongprasert, K. & Bates, D. O. TNF-α-induced ICAM-1 expression and monocyte adhesion in human RPE cells is mediated in part through autocrine VEGF stimulation. Molecular vision 20, 781-789 (2014).
    31 Wang, H., Han, X., Wittchen, E. S. & Hartnett, M. E. TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation. Mol Vis 22, 116-128 (2016).
    32 Miao, H., Tao, Y. & Li, X. X. Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization. Mol Vis 18, 574-580 (2012).
    33 Kelly, J., Ali Khan, A., Yin, J., Ferguson, T. A. & Apte, R. S. Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. The Journal of clinical investigation 117, 3421-3426, doi:10.1172/jci32430 (2007).
    34 Iwakura, Y., Nakae, S., Saijo, S. & Ishigame, H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunological reviews 226, 57-79, doi:10.1111/j.1600-065X.2008.00699.x (2008).
    35 Jin, W. & Dong, C. IL-17 cytokines in immunity and inflammation. Emerging microbes & infections 2, e60, doi:10.1038/emi.2013.58 (2013).
    36 Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nature reviews. Drug discovery 11, 763-776, doi:10.1038/nrd3794 (2012).
    37 Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8, 500-508, doi:10.1038/nm0502-500 (2002).
    38 Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke, England) 5, 101-104, doi:10.1177/135245859900500206 (1999).
    39 Martin, J. C., Baeten, D. L. & Josien, R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clinical immunology (Orlando, Fla.) 154, 1-12, doi:10.1016/j.clim.2014.05.004 (2014).
    40 Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65-70, doi:10.1136/gut.52.1.65 (2003).
    41 Lee, J. S. et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity 43, 727-738, doi:10.1016/j.immuni.2015.09.003 (2015).
    42 Sarra, M., Pallone, F., Macdonald, T. T. & Monteleone, G. IL-23/IL-17 axis in IBD. Inflammatory bowel diseases 16, 1808-1813, doi:10.1002/ibd.21248 (2010).
    43 Amadi-Obi, A. et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 13, 711-718, doi:10.1038/nm1585 (2007).
    44 Guedes, M. C. E., Borrego, L. M. & Proença, R. D. Roles of interleukin-17 in uveitis. Indian J Ophthalmol 64, 628-634, doi:10.4103/0301-4738.194339 (2016).
    45 Li, Y. & Zhou, Y. Interleukin-17: The Role for Pathological Angiogenesis in Ocular Neovascular Diseases. The Tohoku journal of experimental medicine 247, 87-98, doi:10.1620/tjem.247.87 (2019).
    46 Yoshimura, T. et al. Differential roles for IFN-gamma and IL-17 in experimental autoimmune uveoretinitis. International immunology 20, 209-214, doi:10.1093/intimm/dxm135 (2008).
    47 Qiu, A. W., Bian, Z., Mao, P. A. & Liu, Q. H. IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling. Experimental & molecular medicine 48, e280, doi:10.1038/emm.2016.117 (2016).
    48 Zhu, Y. et al. Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization. Immunology 147, 414-428, doi:10.1111/imm.12571 (2016).
    49 Chen, J., Wang, W. & Li, Q. Increased Th1/Th17 Responses Contribute to Low-Grade Inflammation in Age-Related Macular Degeneration. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 44, 357-367, doi:10.1159/000484907 (2017).
    50 Liu, B. et al. Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. Journal of translational medicine 9, 1-12, doi:10.1186/1479-5876-9-111 (2011).
    51 Gong, Y. et al. Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice. PLoS One 10, e0132643-e0132643, doi:10.1371/journal.pone.0132643 (2015).
    52 Lambert, V. et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nature protocols 8, 2197-2211, doi:10.1038/nprot.2013.135 (2013).
    53 Noack, M. & Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity reviews 13, 668-677, doi:10.1016/j.autrev.2013.12.004 (2014).
    54 Eisenstein, E. M. & Williams, C. B. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatric research 65, 26r-31r, doi:10.1203/PDR.0b013e31819e76c7 (2009).
    55 Shibata, K., Yamada, H., Hara, H., Kishihara, K. & Yoshikai, Y. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. Journal of immunology (Baltimore, Md. : 1950) 178, 4466-4472, doi:10.4049/jimmunol.178.7.4466 (2007).
    56 Winkler, B. S., Boulton, M. E., Gottsch, J. D. & Sternberg, P. Oxidative damage and age-related macular degeneration. Molecular Vision 5 (1999).
    57 Papaiahgari, S., Kleeberger, S. R., Cho, H. Y., Kalvakolanu, D. V. & Reddy, S. P. NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells. The Journal of biological chemistry 279, 42302-42312, doi:10.1074/jbc.M408275200 (2004).
    58 Jian, Z. et al. Heme oxygenase-1 protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-ARE pathway. The Journal of investigative dermatology 131, 1420-1427, doi:10.1038/jid.2011.56 (2011).
    59 Naylor, A., Hopkins, A., Hudson, N. & Campbell, M. Tight Junctions of the Outer Blood Retina Barrier. International journal of molecular sciences 21, doi:10.3390/ijms21010211 (2019).
    60 Takahashi, H., Numasaki, M., Lotze, M. T. & Sasaki, H. Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. Immunology letters 98, 189-193, doi:10.1016/j.imlet.2004.11.012 (2005).
    61 Hasegawa, E. et al. IL-23–Independent Induction of IL-17 from γδT Cells and Innate Lymphoid Cells Promotes Experimental Intraocular Neovascularization. The Journal of Immunology 190, 1778, doi:10.4049/jimmunol.1202495 (2013).
    62 Kirkham, P. Oxidative stress and macrophage function: a failure to resolve the inflammatory response. Biochemical Society transactions 35, 284-287, doi:10.1042/bst0350284 (2007).
    63 Takahashi, N. et al. IL-17 produced by Paneth cells drives TNF-induced shock. The Journal of experimental medicine 205, 1755-1761, doi:10.1084/jem.20080588 (2008).
    64 Ishigame, H. et al. Differential Roles of Interleukin-17A and -17F in Host Defense against Mucoepithelial Bacterial Infection and Allergic Responses. Immunity 30, 108-119, doi:https://doi.org/10.1016/j.immuni.2008.11.009 (2009).
    65 Suzuki, S. et al. Expression of Interleukin-17F in a Mouse Model of Allergic Asthma. International Archives of Allergy and Immunology 143(suppl 1), 89-94, doi:10.1159/000101413 (2007).
    66 Kim, J. et al. Tie2 activation promotes choriocapillary regeneration for alleviating neovascular age-related macular degeneration. Science advances 5, eaau6732, doi:10.1126/sciadv.aau6732 (2019).
    67 Li, Z., Burns, A. R., Han, L., Rumbaut, R. E. & Smith, C. W. IL-17 and VEGF are necessary for efficient corneal nerve regeneration. The American journal of pathology 178, 1106-1116, doi:10.1016/j.ajpath.2010.12.001 (2011).
    68 Honorati, M. C., Neri, S., Cattini, L. & Facchini, A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis and Cartilage 14, 345-352, doi:https://doi.org/10.1016/j.joca.2005.10.004 (2006).
    69 Shinoda, H. et al. Reactive oxygen species upregulate the production of VEGF and MMPs in retinal glial cells. Investigative ophthalmology & visual science 45, 745-745 (2004).
    70 Jarrett, S. G. & Boulton, M. E. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 33, 399-417, doi:10.1016/j.mam.2012.03.009 (2012).
    71 Dong, X. et al. Protective effect of canolol from oxidative stress-induced cell damage in ARPE-19 cells via an ERK mediated antioxidative pathway. Mol Vis 17, 2040-2048 (2011).
    72 Huang, S.-Y., Chang, S.-F., Chau, S.-F. & Chiu, S.-C. The Protective Effect of Hispidin against Hydrogen Peroxide-Induced Oxidative Stress in ARPE-19 Cells via Nrf2 Signaling Pathway. Biomolecules 9, 380, doi:10.3390/biom9080380 (2019).
    73 Yang, J. H. et al. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicology and Applied Pharmacology 274, 293-301, doi:https://doi.org/10.1016/j.taap.2013.10.026 (2014).
    74 Zhu, C., Dong, Y., Liu, H., Ren, H. & Cui, Z. Hesperetin protects against H2O2-triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells. Biomedicine & Pharmacotherapy 88, 124-133, doi:https://doi.org/10.1016/j.biopha.2016.11.089 (2017).
    75 Ding, D. et al. Inhibition of TRAF6 alleviates choroidal neovascularization in vivo. Biochemical and Biophysical Research Communications 503, 2742-2748, doi:https://doi.org/10.1016/j.bbrc.2018.08.034 (2018).
    76 Yang, S., Zhao, J. & Sun, X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Devel Ther 10, 1857-1867, doi:10.2147/DDDT.S97653 (2016).
    77 Payne, A. J., Kaja, S., Naumchuk, Y., Kunjukunju, N. & Koulen, P. Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina. International journal of molecular sciences 15, 1865-1886, doi:10.3390/ijms15021865 (2014).
    78 Rao, R. K. & Samak, G. Bile duct epithelial tight junctions and barrier function. Tissue barriers 1, e25718, doi:10.4161/tisb.25718 (2013).

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE