簡易檢索 / 詳目顯示

研究生: 董宜婷
Tung, I-Ting
論文名稱: RC構架內含偏心開口填入式磚牆面內側推試驗與補強之驗證
In-plane Load Tests and Retrofit for In-filled Masonry Panels in RC Frames with Eccentric Openings
指導教授: 杜怡萱
Tu, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 512
中文關鍵詞: 填入式開口面內補強
外文關鍵詞: in-filled masonry, opening, in-plane, retrofit
相關次數: 點閱:248下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 填入式磚牆為台灣RC建築物常用之隔間牆構法,國內外相關研究皆指出填入式磚牆即使含有開口,仍可提供一定程度強度與剛度,亦會影響構架之破壞模式。本文以不同開口形式及有無補強為試驗變因,進行足尺RC構架含有開口填入式磚牆之面內側推試驗,歸納試體行為,並將試驗結果與既有分析模型比對。
    試體共三座,分別為側邊門型、側邊窗型開口以及一座補強後側邊門型開口試體,加載方式施加固定軸壓力,側力以位移控制之往復載重施加。試驗結果顯示,磚牆裂縫發展受磚牆圍束條件影響,三座試體磚牆正向加載時均出現對角裂縫,但不同開口形式磚牆對角裂縫位置受窗台影響,補強試體因補強構件束制,磚牆於反向加載時亦出現對角裂縫,兩座未補強試體則無。邊界柱破壞情況亦因開口形式及磚牆圍束情況而異,補強前後門型試體之獨立柱皆為撓曲破壞後剪力破壞,鄰牆柱皆為剪力破壞,但補強試體因作用於柱的剪力增加,柱剪力破壞較早出現;窗型試體因窗台造成短柱效應,兩柱均為剪力破壞。窗型開口試體極限強度大於門型開口試體,但極限點位移與最大位移小於門型開口試體,原因為磚牆等值壓桿發展角度較緩,且窗台束制柱之變形能力,使得整體剛度較大,變形能力卻相對較差。補強後門型開口試體極限強度與位移均明顯大於未補強門型開口試體,但初始剛度則較小,因試驗初期補強構件尚未接觸磚牆,補強構件對初始剛度的貢獻不大,且補強構件對構架行為並無直接影響,故補強前後門型開口試體最大位移相近。
    本文採SPOCC程式分析柱性能曲線,與磚牆理論性能曲線依變形諧和原則疊加計算整體性能曲線。磚牆分別以陳奕信模型與FEMA 356模型分析,與試驗結果比較顯示以陳奕信模型分析三邊圍束磚牆時,試體軸力全分配至柱,柱採獨立柱為撓曲柱,鄰牆柱為剪力柱模式分析,其軸力分配方式與柱破壞模式合理,亦可得與試驗結果相近但略偏保守之分析曲線;以陳奕信模型分析四邊圍束磚牆時,雙柱皆採撓曲柱模式分析,可得試驗曲線相近但極限強度略偏低估之分析曲線,但柱破壞模式與實際情況不符。以FEMA 356模型分析磚牆時,由於公式無法反映窗台存在及磚牆圍束情況的差異,準確性較低。本文嘗試修正陳奕信模型之磚牆殘餘強度為極限強度之0.3~0.4倍,可改善理論極限點後強度過高的問題。以純構架模擬門型開口與窗型開口試體反向行為,試體理論曲線與試驗曲線非常相近,對於極限強度與位移預估堪稱準確,顯示有開口填入式磚牆於開口側若無圍束,加載方向造成磚牆與構架分離時,磚牆即無強度與剛度貢獻。

    This paper presents the results of in-plane loading tests for in-filled masonry panels with eccentric openings. The specimens included two full-scale masonry panels with eccentric door and window openings, respectively. An additional specimen with a door opening was retrofitted using a new method. All specimens were tested under a combination of constant vertical loading and cyclic lateral loading with controlled displacement. The experimental results showed that diagonal cracks occurred on all specimens, but the locations of the cracks were affected by the windowsills. Diagonal cracks occurred on retrofitted specimen in the two directions due to the constraint of retrofit elements. The independent column with door openings exhibited flexure-shear failure, and the adjoining column failed in shear. Due to the increased of shear capacity on the columns for the retrofitted specimen, shear failure occurred earlier then did ID-e-1.8. The columns with window openings exhibited shear failure due to short-column effect. Specimen IW-e-1.8 showed a much higher maximum strength but lower deformation capacity than that of ID-e-1.8. While the retrofitted specimen ID-e-1.8R showed a much higher maximum strength and displacement but lower stiffness than those of ID-e-1.8. When analyzing with Chen’s model, if the suggested axial load distribution and column analyzing method were used, the analytical curves would be similar to but slightly underestimated comparing to the experimental curves. All of the specimens met the criteria except for specimen ID-e-1.8R, which its failure mode of the columns is different from the actual circumstances. The FEMA 356 model cannot be used to evaluate the strength contribution of the panels, and is thus not applicable to this study. SPOCC can be used to analyze the behavior of bare frames accurately estimate maximum strength and displacement.

    表目錄…………………………………………………………………………………………………………………………………………IV 圖目錄…………………………………………………………………………………………………………………………………………VI 第一章 緒論 1.1 研究動機與目的………………………………………………………………………………………………………1-1 1.2 文獻回顧………………………………………………………………………………………………………………………1-2 1.2.1 RC構架內填磚牆相關文獻 ……………………………………………………………………………1-2 1.2.2 磚牆補強相關文獻……………………………………………………………………………………………1-7 1.3 研究方法……………………………………………………………………………………………………………………1-10 1.4 章節概述……………………………………………………………………………………………………………………1-10 第二章 試驗介紹 2.1 試體設計與試驗規劃………………………………………………………………………………………………2-1 2.1.1 試體設計…………….…………………………………………………………………………………………………2-2 2.1.2 試驗補強措施設計……………………………………………………………………………………………2-9 2.1.3 試驗裝置與加載歷程………………………………………………………………………………………2-14 2.1.4 量測儀器………………………………………………………………………………………………………………2-19 2.2 試體施工過程…………………………………………………………………………………………………………2-24 2.3 試體構件設計方法………………………………………………………………………………………………………………………………………………2-29 2.3.1 補強構件尺寸設計…………………………………………………………………………………………2-29 2.3.2 補強構件施工過程…………………………………………………………………………………………2-36 2.4 材料性質……………………………………………………………………………………………………………………2-38 2.4.1 鋼筋抗拉試驗……………………………………………………………………………………………………2-38 2.4.2 補強構件抗拉試驗…………………………………………………………………………………………2-41 2.4.3 混凝土圓柱試體抗壓試驗……………………………………………………………………………2-43 2.4.4 磚塊抗壓試驗……………………………………………………………………………………………………2-45 2.4.5 砂漿抗壓試驗……………………………………………………………………………………………………2-47 2.4.6 灰縫抗剪試驗……………………………………………………………………………………………………2-50 2.4.7 磚墩抗壓試驗……………………………………………………………………………………………………2-51 2.4.8 磚牆對角拉力試驗…………………………………………………………………………………………2-53 第三章 試驗過程與試驗結果 3.1 試驗流程與加載歷程………………………………………………………………………………………………3-1 3.2 試驗結果……………………………………………………………………………………………………………………3-12 3.2.1 試體破壞歷程……………………………………………………………………………………………………3-12 3.2.2 試體受力與變形關係………………………………………………………………………………………3-65 3.2.3 試體變形模式……………………………………………………………………………………………………3-72 3.2.4 邊界柱鋼筋應變………………………………………………………………………………………………3-95 3.2.5 試體受力行為歸納………………………………………………………………………………………3-119 3.3 小結…………………………………………………………………………………………………………………………3-137 第四章 既有分析模型與試驗結果比對 4.1 磚牆分析模型簡介…………………………………………………………………………………………………4-1 4.1.1 陳奕信磚牆分析模型…………………………………………………………………………………………4-1 4.1.2 FEMA 356………………………………………………………………………………………………………………4-4 4.1.3 簡化推垮分析之柱性能曲線計算程式SPOCC…………………………………………4-6 4.2 分析模型與試驗結果比對……………………………………………………………………………………4-8 4.2.1 柱理論強度與性能曲線……………………………………………………………………………………4-9 4.2.2 陳奕信分析模型與試驗結果比對……………………………………………………………4-13 4.2.3 FEMA 356填入式磚牆性能曲線…………………………………………………………………4-22 4.3 小結……………………………………………………………………………………………………………………………4-34 第五章 結論與建議 5.1 結論………………………………………………………………………………………………………………………………5-1 5.2 建議………………………………………………………………………………………………………………………………5-4 參考文獻…………………………………………………………………………………………………………………………………參-1 附錄 裂縫圖與破壞照片 A. 試體ID-e-1.8各階段裂縫圖與破壞照片………………………………………………………A-1 B. 試體IW-e-1.8各階段裂縫圖與破壞照片………………………………………………………B-1 C. 試體ID-e-1.8R各階段裂縫圖與破壞照片……………………………………………………C-1 附錄 應變與側位移關係圖 D. 各試體主筋應變與側位移關係圖………………………………………………………………………D-1 E. 各試體箍筋應變與側位移關係圖………………………………………………………………………E-1 F. 鋼棒應變與側位移關係圖………………………………………………………………………………………F-1

    1. 林育瑄,「RC構架內含偏心開口不同構法磚牆面內側向加載試驗」,碩士論文,國立成功大學建築研究所,台南,2016。
    2. 許元馨,「不同開口形式加強磚造磚牆面內側向加載試驗」,碩士論文,國立成功大學建築研究所,台南,2014。
    3. 趙彥棻,「RC構架內含填入式開口磚牆面內側向加載試驗與分析」,碩士論文,國立成功大學建築研究所,台南,2014。
    4. 蔡旻欣,「窗型開口形式填入式磚牆材料與面內側向加載試驗」,碩士論文,國立成功大學建築研究所,台南,2016。
    5. D. Kakaletsis and C. Karayannis, “Experimental Investigation of Infilled R/C Frames with Eccentric Openings”, Structural Engineering and Mechanics, Vol. 26, No. 3, pp. 231-250, 2007.
    6. D.J. Kakaletsis and C.G. Karayannis, “Influence of Masonry Strength and Openings on Infilled R/C Frames Under Cycling Loading”, Journal of Earthquake Engineering, Vol.12, pp.197-221, 2008.
    7. D. Kakaletsis, “Analytical Modeling of Masonry Infills with Openings”, Structural Engineering and Mechanics, Vol. 31, No.4, pp.423-437,2009.
    8. B. Blackard, K. Willam, and S. Mettupalayam, “Experimental Observations of Masonry Infilled Reinforced Concrete Frames with Openings”, ACI SP-265-9, Thomas T.C. Hsu Symposium on ‘Shear and Torsion in Concrete Structures’, A. Belarbi, Y-L. Mo, and A.S. Ayoub, eds.:199-222, Farmington Hills: American Concrete Institute, 2009.
    9. Federal Emergency Management Agency(FEMA), Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356), FEMA, USA, 2000.
    10. 陳奕信,「含磚牆RC建築結構之耐震診斷」,博士論文,國大成功大學建築研究所,台南,2003。
    11. 莊宗樺,「部分圍束加強磚造高型磚牆面內受力行為研究」,博士論文,國立成功大學建築研究所,台南,2013。
    12. 蔡克銓、黃世建、鍾立來,「校舍之耐震評估與補強講習會 (第二版)」,國家地震工程研究中心技術報告,NCREE-05-018,台北,2005。
    13. T.C. Chiou and S.J. Hwang, “Tests on Cyclic Behavior of Reinforced Concrete Frames with Brick Infill”, Earthquake Engineering and Structural Dynamics, vol. 44, pp.1939-1958, 2015.
    14. M.A. Haroun and E.H. Ghoneam, “Seimic Performance Testing of Masonry-Infilled Frames Retrofitted by Fiber Composite”, 15th International Modal Analysis Conference(IMAC XV), 1997.
    15. H. Okail, “ Structural Performance of Confined Masonry Walls Retrofitted Using Ferrocement and GFRP Under In-Plane Cyclic Loading”, Engineering Structures, vol. 94, pp. 54-69, 2015.
    16. A. Marinilli and E. Castilla, “Experimental Evaluation of Confined Masonry Walls with Several Confining-Columns”, 13th World Conference on Earthquake Engineering, paper No. 2129, Canada, 2004.
    17. 盧錦嫻,「校舍隔間磚牆面外耐震性能與碳纖維貼片補強之實尺寸實驗研究」,碩士論文,國立台灣科技大學營建工程學系研究所,台北,2006。
    18. Lombard, J.C. B. Eng, “Seismic Strengthening and Repair of Reinforced Concrete Shear Wall using Externally Bonded Carbon Fiber Tow Sheets”, Department of Civil and Environment Engineering, Carleton University, Canada, September 1999.
    19. 張庭瑜,「鋼筋混凝土開口剪力牆校舍補強之試驗研究」,碩士論文,國立台灣大學土木工程學研究所,台北,2015。
    20. G. Magenes and G. M. Calvi, “In-Plane Seismic Response of Brick Masonry Walls”, Earthquake Engineering and Structural Dynamics, vol. 26, pp. 1091-1112, 1997.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE