| 研究生: |
吳惠雯 Wu, Hui-Wen |
|---|---|
| 論文名稱: |
雙原子鈉分子21Dg與31Pg電子態之雙光子共振光譜 Optical-Optical Double Resonance Spectroscopy of the Na2 21Dg and 31Pg States |
| 指導教授: |
黃守仁
Whang, Thou-Jen 蔡錦俊 Tsai, Chin-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 雙原子鈉分子 |
| 外文關鍵詞: | Na2, OODR |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用雙光子共振光譜法(Optical–Optical Double Resonance, OODR)來偵測雙原子鈉分子其對稱(gerade)的高能位單重態。首先使用氬離子雷射將雙原子鈉分子由基態(X1Sg+)激發到B1Pu電子態,再使用Ti-sapphire雷射將雙原子鈉分子由B1Pu電子態激發至欲偵測之上態。雷射激發躍遷方程式如下:
B1Pu(v’, J’) X1Sg+ (v”, J”) + hn1
21Dg(v, J) 或 31Pg(v, J) B1Pu(v’, J’) + hn2
而偵測方法,則是偵測鈉分子從高能位的單重態經由碰撞後到高能位的三重態,再躍遷回a3Σg+電子態的螢光訊號。
本實驗為首次利用實驗之方法偵測到雙原子鈉分子之21Dg電子態,偵測到v=0~23, 25~28等28個振動能階值,轉動能階分佈在J=11~99,共計有582個振轉能階。將偵測所得之實驗數據經計算得到一組分子常數,並建立其RKR位能曲線。
實驗中也偵測得到31Pg電子態246個振轉能階,其中包括有27個振動能階值v=0~26,而轉動能階分佈在J=11~99。將實驗所偵測而得之數據經計算得到一組新的分子常數,並建立RKR位能曲線。
Using the optical-optical double resonance spectroscopy (OODR) technique, two Rydberg electronic states with gerade-parity of Na2 were observed. Na2 molecules were pumped from the X1Sg+ state to the intermediate B1Pu state by an Ar+ laser. Then, the Ti-sapphire laser further excites molecules from the intermediate B1Pu state to the higher excited states. The transitions can be described as:
B1Pu(v’, J’) X1Sg+ (v”, J”) + hn1
21Dg(v, J) or 31Pg(v, J) B1Pu(v’, J’) + hn2
The triplet Rydberg states, such as 23Pg, 33Pg or 3Sg+, were populated via collision energy transfer from 21Dg or 31Pg states. The fluorescence from triplet electronic states to a3Σg+ state was monitored by a filtered- PMT.
The 21Dg state is experimentally observed by OODR method for the first time. We have observed 582 rovibrational levels with the vibrational and rotational quantum in the range of 0≦v≦28 and 11≦J≦99, respectively. The vibrational quamtum nunber assignment was confired by the comparison of excitation intensities and result fluorescence with the calculated Franck-Condon factors (FCF) between the 21Dg and B1Pu states. The Dunham coefficients and RKR potential energy curve were determined in this study.
In the meanwhile, we also observed 246 rovibrational levels, including 27 vibrational levels of the 31Pg state. The Dunham coefficients were determined for higher range of rotational quantum, 11≦J≦99, and the RKR potential energy curve were constructed.
1. H. E. Roscoe and A. Schuster, Proc. R. Soc. London 22, 362 (1874).
2. M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, and A. L. Schawlow, Phys. Rev. Lett. 37, 683 (1976).
3. J. P. Woerdman, Chem. Phys. Lett. 43, 279 (1976).
4. N. W. Carlson, A. J. Taylor, K. M. Jones, and A. L. Schawlow, Phys. Rev. A 24, 822 (1981).
5. K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, and W. T. Zemke, J. Chem. Phys. 78, 3599 (1983).
6. G. Herzberg, "Molecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules", Robert E. Krieger Publishing Co., Malabar, Florida (1989).
7. P. R. Bunker and P. Jensen, " Molecular Symmetry and Spectroscopy", 2nd ed., NCR Research Press, Ottawa (1998).
8. R. F. Barrow, J. Verges, C. Effantin, K. Hussein, and D’Incan, Chem. Phys. Lett. 104, 179 (1984).
9. W. T. Zemke and W. C. Stwalley, J. Chem. Phys. 100, 2661 (1994).
10. K. M. Jones, S. Maleki, S. Bize, and P. D. Lett, C. J. Williams, H. Richling, H. Knockel, E. Tiemman, H. Wang, P. L. Gould, and W. C. Stwalley, Phys. Rev. A 54, 1006 (1996).
11. G. W. King and J. H. van Vleck, Phys. Rev. 55,1165 (1939).
12. R. S. Mulliken, Phys. Rev. 120, 1674 (1960).
13. W. Demtroder and M. Stock, J. Mol. Spectrosc. 55, 476 (1975).
14. P. Kusch and M. M. Hessel, J. Chem. Phys. 68, 2591 (1978).
15. W. Demtroder, M. McClintock, and R. N. Zare, J. Chem. Phys. 51, 5495 (1969).
16. J. Keller and J. Weiner, Phys. Rev. A 29, 2943 (1984).
17. G. Gerber and R. Moller, Phys. Rev. Lett. 55, 814 (1985).
18. H. Richter, H. Knockel, and E. Tiemann, Chem. Phys. 157, 217
(1991).
19. H. J. Vedder, G. K. Chawla, and R. W. Field, Chem. Phys. Lett. 111, 303 (1984).
20. G. K. Chawla, H. J. Vedder, and R. W. Field, J. Chem. Phys. 86, 3082 (1987).
21. E. Tiemann, Atoms, Molecules and Clusters, 5, 77(1987).
22. M. M. Hessel, E. W. Smith, and R. E. Drullinger, Phys. Rev. Lett. 33, 1251 (1974).
23. W. Demtroder, W. Stetzenback, M. Stock, and J. Witt, J. Mol. Spectrosc. 61, 382 (1976).
24. J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Spectrochim. Acta 51, 1879 (1995).
25. J. M. L. Poyato, J. J. Camacho, A. M. Polo, and A. Pardo, Spectrochim. Acta 52, 409 (1996).
26. J. J. Camacho, J. M. L. Poyato, A. M. Polo, and A. Pardo, J. Quant.
Spectrosc. Radiat. Transfer 56, 353 (1996).
27. J. J. Camacho, A. Pardo, A. M. Polo, D. Reyman, and J. M. L. Poyato,J. Mol. Spectrosc. 191, 248 (1998).
28. A. Pardo, Chem. Phys. Lett. 309, 55 (1999).
29. J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, Spectrochim. Acta A 56, 769 (2000).
30. J. J. Camacho, J. Santiago, A. Pardo, D. Reyman, and J. M. L. Poyato, J. Quant. Spectrosc. Radiat. Transfer 65, 729 (2000).
31. A. Pardo, J. Mol. Spectrosc. 199, 225 (2000).
32. J. J. Camacho, A. Pardo, and I. P. Acin, J. Phys. B: At. Mol. Opt. Phys. 34 , 2597 (2001).
33. G. –H. Jeung, Phys. Rev. A 35, 26 (1987).
34. A. Henriet and F. Masnou-Seeuws, J. Phys. B: At. Mol. Opt. Phys. 20, 671 (1987).
35. A. Henriet and F. Masnou-Seeuws, J. Phys. B: At. Mol. Opt. Phys. 23, 219 (1990). 36. S. Magnier, Ph. Millie, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 98, 7113 (1993).
37. A. J. Taylor, K. M. Jones, and A. L. Schawlow, J. Opt. Soc. Am. 73, 994 (1983).
38. R. F. Barrow, C. Amiot, J. Verges, J. d’Incan, C. Effantin, and A. Bernard, Chem. Phys. Lett. 183, 94 (1991).
39. Y. L. Pan, L. S. Ma, L. E. Ding, and D. P. Sun, J. Mol. Spectrosc. 162, 178 (1993).
40. Y. L. Pan, D. P. Sun, L. S. Ma, L. E. Ding, and Z. G. Wang, J. Mol. Spectrosc. 169, 534 (1995).
41. 莊凱淵,²雙原子鈉分子的(7d)1Dg能態之雙光子共振光譜研究²,
國立成功大學化學所碩士論文(2000年六月)。
42. 紀兆盈,²雙原子鈉分子(7d)1Dg電子態之雙光子共振光譜研究與D1Pu電子態之探討²,國立成功大學化學所碩士論文(2002年六月)。
43. Li Li, L. Yaoming, and A. M. Lyyra, J. Chin. Chem. Soc. 48, 293 (2001).
44. G. –H. Jeung, J. Phys. B: At. Mol. Opt. Phys. 16, 4289 (1983).
45. C. Effantin, J. d’Incan, A. J. Ross, R. P. Barrow, and J. Verges, J. Phys. B: At. Mol. Opt. Phys. 15, 1515 (1984).
46. T. J. Whang, H. Wang, A. M. Lyyra, Li Li, and W. C. Stwalley, J. Mol. Spectrosc. 145, 112 (1991).
47. C. C. Tsai, Ph.D. dissertation, The University of Iowa, Iowa, 1993.
48. C. C. Tsai, J. T. Bahns, and W. C. Stwalley, J. Mol. Spectrosc. 167, 437 (1994).
49. C. Effantin, A. J. Ross, A. Topouzkhanian, and A. Bernard, J. Mol. Spectrosc. 154, 451 (1992).
50. C. C. Tsai, J. T. Bahns, and W. C. Stwalley, J. Chem. Phys. 99, 7417 (1993).
51. 相軍,戴星燦,彭盛,陳宏民,劉耀明,李儉,陳瓞延及李麗,光譜學與光譜分析。第91卷,第一期,1999年二月。
52. X. Dai, J. Xing, Y. Liu, and Li Li, J. Mol. Spectrosc. 198, 244 (1999).
53. T. J. Whang, H. Wang, A. M. Lyyra, Li Li, and W. C. Stwalley, J. Mol. Spectrosc. 145, 178 (1991).
54. H. Wang, T. J. Whang, A. M. Lyyra, Li Li, and W. C. Stwalley, J. Chem. Phys. 94, 4756(1991).
55. R. W. Barrow, C. Amiot, J. Verges, J. d’Incan, C. Effantin, and A. Bernard, Phys. Lett. 183, 94(1994).
56. Li Li and R. W. Field, J. Phys. Chem. 87, 3020 (1983).
57. X. Xie and R. W. Field, Chem Phys. 99, 337 (1985).
58. T. J. Whang, C. C. Tsai, A. M. Lyyra, Li Li, and W. C. Stwalley, J. Mol. Spectrosc. 160,411 (1993).
59. A. Yiannopoulou, K. Urbanski, A. M. Lyyra, Li Li, B. Ji, J. T. Bahns, and W. C. Stwalley, J. Chem. Phys. 102 , 3024 (1995).
60. W. Demtröder, "Laser Spectroscopy", Springer-Verlag, Berlin, 569 (1981).
61. 丁勝懋,"雷射工程導論",第三版,中央出版社,1993。
62. A. S. King, J. Astrophys. 28, 300 (1908).
63. G. M. Grover, T. P. Cotter, and G. F. Erickson, J. Appl. Phys. 35, 1990 (1964).
64. C. R. Vidal and J. Cooper, J. Appl. Phys. 40, 3370 (1969).
65. C. R. Vidal and F. B. Haller, Rev. Sci. Instr. 42, 1779 (1971).
66. C. R. Vidal and M. M. Hessel, J. Appl. Phys. 43, 2776 (1972).
67. C. R. Vidal, J. Appl. Phys. 44, 2225 (1973).
68. J. T. Bahns, Ph.D. dissertation, The University of Iowa, Iowa, 1983.