| 研究生: |
趙震中 Chao, Chen-Chung |
|---|---|
| 論文名稱: |
以光場強度識別量子非局域性的侷限與挑戰 Challenges in Identifying Quantum Nonlocality Using Intensity-Only Detection |
| 指導教授: |
默亮湍
Moreau, Paul-Antoine |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 量子糾纏 、非局域性 、貝爾不等式 、量子通訊 、量子成像 、單光子探測 |
| 外文關鍵詞: | Quantum entanglement, Nonlocality, Bell inequality, Quantum communication, Quantum imaging, Single Photon Detection |
| 相關次數: | 點閱:1 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二十世紀初期量子力學的興起,從根本上重塑了我們對物理世界的認知,並促成了現代科技的蓬勃發展。正如眾多實驗所證實,量子糾纏(Quantum entanglement)是其迥異於古典物理且最引人入勝的特性之一。此現象代表物理系統間存在一種強大的關聯性,且不受空間距離所限制。目前學界已提出多種應用量子關聯的資訊架構,許多已在實驗上獲得實證。由於光子具有傳播速度快且抗退相干(Decoherence)能力強等特性,尤其在量子通訊與量子成像領域糾纏光子態是極具潛力的資訊載體。
為了辨別量子關聯的嚴格形式,實驗上極需能量測光子系統「非局域性」(Nonlocality)的方法。然而,在實務上精確測量特定的量子性質仍具諸多挑戰與限制。微觀尺度的單光子探測不僅難以達成,且往往需要昂貴的設備。因此,已有研究嘗試利用巨觀尺度的光場強度來估算量子非局域性。
鑑於巨觀測量中的資訊損失可能導致實驗漏洞,本研究透過計算特定光子態的 CHSH 參數,探討此類方法存在的潛在缺陷。我們透過電腦模擬揭示了這些潛在問題,並展示在探測機制使用條件不當的情況下,即使不存在量子關聯,仍可能得到違反貝爾不等式(Bell's inequality)的錯誤結論。最後,我們進一步討論了以光場強度估算光子系統非局域行為的前置條件與系統誤差來源,藉此釐清真正的量子優勢。
The emergence of quantum mechanics in the early 20th century fundamentally reshaped our understanding of the world and stimulated modern technologies. One of the most intriguing features which differ from classical physics, as evidenced by numerous experiments, is quantum entanglement. It is a strong correlation among physical systems and is not constrained in a finite spatial region. Various schemes are proposed to utilize the information capacity of quantum correlation and have already been realized experimentally. Owing to the propagation speed and robustness against decoherence, entangled photonic states are a promising candidate for quantum schemes, especially in quantum communication and quantum imaging.
In order to identify the strong form of quantum correlations, the experimental methods to characterize the nonlocality of photonic systems are demanded. However, a proper measurement of the exact quantum feature is challanging in practice. The detection in the single-photon regime could be difficult to achieve and requires expensive detectors. Therefore, attempts to characterize the nonlocality by intensity detection in a classical regime are made.
Aware of the information loss in a macroscopic measurement which leads to loopholes, we study the potential flaws that may arise in such approach by calculating the CHSH parameter for specific photonic states. We reveal these underlying issues with computer simulations, and showcase a possible situation where Bell inequality is violated without quantum correlation when the detection regime is improperly used. We further discuss the preliminaries and the origin of the systematic errors for the estimation of non-local behavior of photonic systems, and clarify the true quantum advantage.
[1] J. Clerk Maxwell.A dynamical theory of the electromagnetic field.Philosophical Transactions of the Royal Society of London, 155:459–512, 1865. ISSN 02610523. URL http://www.jstor.org/stable/108892.
[2] Max Planck. Ueber das gesetz der energieverteilung im normalspectrum. Annalen der Physik, 309(3):553–563, 1901. doi: https://doi.org/10.1002/andp.19013090310. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19013090310.
[3] A. Einstein. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 322(6):132–148, January 1905. doi: 10.1002/andp.19053220607.
[4] De Broglie, Louis. Recherches sur la théorie des quanta. Ann. Phys., 10(3):22– 128, 1925. doi: 10.1051/anphys/192510030022. URL https://doi.org/10.1051/ anphys/192510030022.
[5] Walther Gerlach and Otto Stern. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift fur Physik, 9(1):349–352, dec 1922. doi: 10. 1007/BF01326983. URL https://ui.adsabs.harvard.edu/abs/1922ZPhy... .9..349G. Provided by the SAO/NASA Astrophysics Data System.
[6] Gilbert Grynberg, Alain Aspect, and Claude Fabre. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light. Cambridge University Press, 2010.
[7] A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47(10):777–780, May 1935. doi: 10.1103/PhysRev.47.777.
[8] Artur Ekert and Peter L. Knight. Entangled quantum systems and the schmidt decomposition. American Journal of Physics, 63(5):415–423, 05 1995. ISSN 0002-9505. doi: 10.1119/1.17904. URL https://doi.org/10.1119/1.17904.
[9] David Bohm. A suggested interpretation of the quantum theory in terms of ”hidden” variables. i. Phys. Rev., 85:166–179, Jan 1952. doi: 10.1103/PhysRev.85.166. URL https://link.aps.org/doi/10.1103/PhysRev.85.166.
[10] David Bohm. A suggested interpretation of the quantum theory in terms of ”hidden” variables. ii. Phys. Rev., 85:180–193, Jan 1952. doi: 10.1103/PhysRev.85.180. URL https://link.aps.org/doi/10.1103/PhysRev.85.180.
[11] J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1:195– 200, Nov 1964. doi: 10.1103/PhysicsPhysiqueFizika.1.195. URL https://link. aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.
[12] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23:880–884, Oct 1969. doi: 10.1103/PhysRevLett.23.880. URL https://link.aps.org/doi/10. 1103/PhysRevLett.23.880.
[13] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner. Bell nonlocality. Rev. Mod. Phys., 86:419–478, Apr 2014. doi: 10.1103/ RevModPhys.86.419. URL https://link.aps.org/doi/10.1103/RevModPhys. 86.419.
[14] Stuart J. Freedman and John F. Clauser. Experimental test of local hidden-variable theories. Phys. Rev. Lett., 28:938–941, Apr 1972. doi: 10.1103/PhysRevLett.28.938. URL https://link.aps.org/doi/10.1103/PhysRevLett.28.938.
[15] Alain Aspect. Proposed experiment to test the nonseparability of quantum mechanics. Phys. Rev. D, 14:1944–1951, Oct 1976. doi: 10.1103/PhysRevD.14.1944. URL https: //link.aps.org/doi/10.1103/PhysRevD.14.1944.
[16] Alain Aspect, Philippe Grangier, and Gérard Roger. Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities. Phys. Rev. Lett., 49:91–94, Jul 1982. doi: 10.1103/PhysRevLett.49.91. URL https://link.aps.org/doi/10.1103/PhysRevLett.49.91.
[17] Bas Hensen, Hannes Bernien, Anaïs E Dréau, Andreas Reiserer, Norbert Kalb, Machiel S Blok, Just Ruitenberg, Raymond FL Vermeulen, Raymond N Schouten, Carlos Abellán, et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575):682–686, 2015.
[18] Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan-Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger. Significant-loopholefree test of bell’s theorem with entangled photons. Phys. Rev. Lett., 115:250401, Dec 2015. doi: 10.1103/PhysRevLett.115.250401. URL https://link.aps.org/doi/ 10.1103/PhysRevLett.115.250401.
[19] Lynden K. Shalm, Evan Meyer-Scott, Bradley G. Christensen, Peter Bierhorst, Michael A. Wayne, Martin J. Stevens, Thomas Gerrits, Scott Glancy, Deny R. Hamel, Michael S. Allman, Kevin J. Coakley, Shellee D. Dyer, Carson Hodge, Adriana E. Lita, Varun B. Verma, Camilla Lambrocco, Edward Tortorici, Alan L. Migdall, Yanbao Zhang, Daniel R. Kumor, William H. Farr, Francesco Marsili, Matthew D. Shaw, Jeffrey A. Stern, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Thomas Jennewein, Morgan W. Mitchell, Paul G. Kwiat, Joshua C. Bienfang, Richard P. Mirin, Emanuel Knill, and Sae Woo Nam. Strong loophole-free test of local realism. Phys. Rev. Lett., 115:250402, Dec 2015. doi: 10.1103/PhysRevLett.115.250402. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.250402.
[20] Christopher C. Gerry and Peter L. Knight. Introductory Quantum Optics. Cambridge University Press, 2005.
[21] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov. Invited review article: Singlephoton sources and detectors. Review of Scientific Instruments, 82(7):071101, 07 2011. ISSN 0034-6748. doi: 10.1063/1.3610677. URL https://doi.org/10.1063/1. 3610677.
[22] HAMAMATSU.PhotomultipliertubemoduleH12386-113.https://www.hamamatsu.com/jp/en/product/optical-sensors/pmt/pmt-module/ photon-counting-head/H12386-113.html, 2025.Online; accessed 18 October 2025.
[23] Thorlab.SPDMH2. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5255&pn=SPDMH2#15061, 2025. Online; accessed 18 October 2025.
[24] IDQ. InGaAs/InP Single-Photon Avalanche Diodes ID Qube ULN. https://www.idquantique.com/quantum-detection-systems/products/id-qube-uln/, 2025. Online; accessed 18 October 2025.
[25] IDQ. Superconducting Nanowire Single Photon Detectors ID281 Pro SNSPD System. https://www.idquantique.com/quantum-detection-systems/products/ id281-pro-snspd-system/, 2025. Online; accessed 18 October 2025.
[26] Paul-Antoine Moreau, Ermes Toninelli, Thomas Gregory, and Miles J Padgett. Imaging with quantum states of light. Nature Reviews Physics, 1(6):367–380, 2019.
[27] Jun Zhang, Mark A Itzler, Hugo Zbinden, and Jian-Wei Pan. Advances in ingaas/inp single-photon detector systems for quantum communication. Light: Science & Applications, 4(5):e286–e286, 2015.
[28] Yi-Shan Lee, Yan-Min Liao, Ping-Li Wu, Chi-En Chen, Yu-Jie Teng, Yu-Ying Hung, and Jin-Wei Shi. In0.52al0.48as based single photon avalanche diodes with stepped e-field in multiplication layers and high efficiency beyond 60IEEE Journal of Selected Topics in Quantum Electronics, 28(2: Optical Detectors):1–7, 2022. doi: 10.1109/ JSTQE.2021.3114130.
[29] Cristiano Niclass, Mineki Soga, Hiroyuki Matsubara, Masaru Ogawa, and Manabu Kagami. A 0.18 µm cmos soc for a 100m-range 10fps 200× 96-pixel time-of-flight depth sensor. In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pages 488–489. IEEE, 2013.
[30] Ximing Ren, Peter W. R. Connolly, Abderrahim Halimi, Yoann Altmann, Stephen McLaughlin, Istvan Gyongy, Robert K. Henderson, and Gerald S. Buller. Highresolution depth profiling using a range-gated cmos spad quanta image sensor. Opt. Express, 26(5):5541–5557, Mar 2018. doi: 10.1364/OE.26.005541. URL https://opg.optica.org/oe/abstract.cfm?URI=oe-26-5-5541.
[31] Eric Lantz, Fabrice Devaux, and Serge Massar. Detecting single photons is not always necessary to evidence interference of photon probability amplitudes. Phys. Rev. A, 110: 023701, Aug 2024. doi: 10.1103/PhysRevA.110.023701. URL https://link.aps. org/doi/10.1103/PhysRevA.110.023701.