簡易檢索 / 詳目顯示

研究生: 吳金俊
Wu, Chin-Chun
論文名稱: 沉積鎳酸鑭奈米柱狀晶緩衝層應用於鎳鋅鐵氧-鐵酸鉍複合材料薄膜之成長
Deposition of LaNiO3 nanocolumnar buffer layer for the growth of BiFeO3 - Ni0.5Zn0.5Fe2O4 Composite film
指導教授: 齊孝定
Qi, Xia-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 83
中文關鍵詞: 多鐵性複合薄膜柱狀晶鎳酸鑭
外文關鍵詞: multiferroic, composite, columnar structure, LaNiO3
相關次數: 點閱:112下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用磁控濺鍍系統製備多鐵性複合薄膜鐵酸鉍(BiFeO3)+鎳鋅鐵氧(Ni0.5Zn0.5Fe2O4)於鎳酸鑭 (LaNiO3)底電極上,探討以鎳酸鑭緩衝層的柱狀晶微結構減緩來自基板的箝制效應 (Clamping effect),進而提升磁電係數 (αE)。
    鎳酸鑭藉由調控製程參數,在工作壓力50 mtorr,氧分壓6.25 mtorr的環境中,以80W在溫度從350 到750度生長後於管爐中以全氧的氣氛下於600度退火1小時提升熱穩定性與導電率,其導電率約落在102 (Ω-1cm-1)。並以原子力顯微鏡驗證其柱狀直徑從450度的49.7 nm增加到750度的97.3 nm,而表面粗度(Ra)也從1.50增加至2.96 nm,之後以此基準條件下進行柱狀晶結構的生長區間之研究。
    在氧分壓的調控中,於氧分壓4.25與9.375 mtorr下得到柱狀晶結構且無雜項生成。接著進行工作壓力的探討,於工作壓力在32mtorr下得到具有柱狀晶的鎳酸鑭純相,而20mtorr與10mtorr 因為La:Ni比例偏移劑量比造成鍍率降低而失去柱狀晶特徵且生成雜相。藉此結果證明影響柱狀晶結構的因素主要為工作壓力,而溫度與氧分壓無法決定其形成與否,卻影響其柱狀直徑。
    多鐵性複合薄膜鐵酸鉍 + 鎳鋅鐵氧以雙靶磁控濺鍍的方式,沉積於LNO/Si上,其中鎳酸鑭分別使用兩種不同直徑的柱狀晶,其直徑約60.0與97.3 nm,而兩者分別使用磁控濺鍍系統於氧分壓6.25與9.375 mtorr沉積而得,藉由SEM的截面圖下證實鎳酸鑭緩衝層約為200 nm。而從低掠角繞射圖中可以證實無論是複合薄膜或是緩衝層都以多晶的方式生長,而鐵酸鉍與鎳酸鑭具有較佳的晶格匹配度,在特定成長條件的鐵酸鉍上呈現(110)的擇優取向,但鎳鋅鐵氧因為無基板,溫度等條件下幫助導致結晶性較差,而經由磁滯曲線與TEM加以證實亞鐵磁相的存在,其中飽和磁化量(MS)在4 kOe下都約為39.50 (emu/g),而交換偏置(HEX)在室溫下分別為3.05與8.61 Oe,矯頑力(HC)則分別為39.80與70.81 Oe,而交換偏置則證實BFO/NZFO界面無擴散等化學反應。TEM的圖像觀察結果表示多鐵性複合薄膜是為顆粒-矩陣型(0-3 type),鎳鋅鐵氧以顆粒的方式鑲嵌於鐵酸鉍中。
    在磁電係數的量測中,電壓量測的方向固定為垂直基板,而直流磁場及交流磁場的方向保持相同,藉由調整磁場方向垂直或平行基板來進行αE,L (L-T mode)與αE,T (T-T mode)的係數量測。在細柱狀晶 (60nm) 與細柱狀晶 (97.3nm) 的鎳酸鑭上分別都成長兩種不同厚度的複合薄膜,各為210與300 nm。αE,T在四個結果中都大於αE,L,藉此證明柱狀晶明顯改善in-plane的殘留應力。而隨著厚度增加,晶粒磊晶造成於out-plane的殘留應力也隨之降低,同時使αE,L 降低而提升αE,T的磁電響應。在細柱狀晶上成長的複合薄膜中,BFO具有(110)的擇優取向,此in-plane的殘留應力使αE,L 在零偏壓場下有較大的值,並隨著厚度增加而得以減緩。αE,L在複合薄膜為210 與300 nm時,在共振頻率4 kHz以及無偏壓場下分別為2.056和1.292 (V·Ohm-1cm-1),並且在f = 1kHz下分別在外加偏壓場1.25和2kOe時為1.073和1.032 (V·Ohm-1cm-1)。而αE,T 因為柱狀晶的效果使其值大於αE,L,在複合薄膜為210 與300 nm時,在共振頻率4 kHz以及無偏壓場下分別為2.759和3.071 (V·hm-1cm-1),並且在f = 1kHz下分別在外加偏壓場2.25和3.75kOe時為1.419和1.442 (V·Ohm-1cm-1)。

    A multiferroic composite film with a combination of ferrimagnetic Ni0.5Zn0.5Fe2O4 (NZFO) and multiferroic BiFeO3 (BFO) was grown on the LaNiO3 (LNO) buffered Si (001) substrate using dual-target RF magnetron co-sputtering. LNO polycrystalline films were prepared for a nanocolumnar structure and were confirmed with SEM. The effect of temperature, partial oxygen pressure (pO2), and working pressure are presented here, where at a lower working pressure, 10 and 20 mtorr, no columnar structures devoloped due to a deviated Ni/La ratio. In response to changes in temperature, the columns become finer as temperature decreased. The diameters of the columns were 59.4, 69.0 and 97.3 nm at 550, 650 and 750oC, respectively, as measured using AFM. Higher pO2 revealed fine columns, which was confirmed via SEM. Such a nanostructure is expected to minimize the “substrate clamp” problem that limits the applications of this type of composite films. BFO + NZFO composite films were deposited on columnar structures with different diameters. Exchange bias was provided to ensure there was no interfacial diffusion between the composite were BFO particles embedded in the NZFO matrix, as confirmed with TEM. The longitudinal coefficient (αE,L) and transverse coefficient (αE,T) were measured. All results showed αE,T to be larger than αE,L. BFO and LNO showed grain epitaxy cause higher αE,L that decreased with increases in thickness. This residual strain was relaxed by the columns in the in-plane direction; thus, αE,T enhanced as thickness increased. For composites deposited on LNO of the fine columns, αE,L and αE,T are 2.056 and 2.759 V·Ohm-1cm-1 under a 0 bias field at the resonance frequency of 4 kHz, as the thickness increased to 300 nm, and the αE,L and αE,T are 1.292 and 3.071 V·Ohm-1cm-1 under a 0 bias field at the resonance frequency of 4 kHz.

    Content 摘要 I Extended Abstract III CHAPTER 1: INTRODUCTION 1 1.1 Motivations 1 1.2 Introduction of multiferroicity and magnetoelectric materials 2 1.3 Magnetoelectric devices and applications 7 CHAPTER 2: LITERATURE REVIEW AND BACKGROUND 11 2.1 Categories and sources of magnetism 11 2.1.1 Ferromagnetism 12 2.1.2 Antiferromagnetism 13 2.1.3 Exchange Bias 13 2.2 Magnetoelectric effect 15 2.3 Multiferroic materials 17 2.3.1 Single-phase multiferroic materials 18 2.3.2 Multiferroic composites 20 2.4 Introduction of LaNiO3 23 2.5 Introduction of BiFeO3 25 2.6 Introduction of NixZn1-xFe2O4 28 CHAPTER 3: EXPERIMENT METHODS AND PROCEDURES 31 3.1 Experimental procedures 31 3.2 Magnetron RF sputtering 32 3.3 X-Ray Diffractometer 34 3.4 Electron Microscopy 36 3.5 Measurement system of Magnetoelectric effect 38 CHAPTER 4: RESULTS AND DISCUSSION 40 4.1 LaNiO3 40 4.1.1 Effect of different working pressure in 750oC 40 4.1.2 Effect of different substrate temperatures 44 4.1.3 Effect of different oxygen partial pressure in 750 oC 49 4.2 BiFeO3 52 4.3 BiFeO3+Ni0.5Zn0.5Fe2O4 composite 54 4.3.1 Effect of LaNiO3 of different growth temperature in 650 oC 54 4.4.2 Effect of different power in composite in 700oC 66 4.4.3 Effect of different power in composite in 750oC 68 4.4 Magnetic characteristics 70 CHAPTER 5: CONCLUSION 74 REFERENCE 76

    1. S.Z. Lu, X. Qi, RF magnetron co-sputtering growth and characterisation of multiferroic composte films of Ni0.5Zn0.5Fe2O4 + BiFeO3, Journal of Materials Chemistry C, 4, 8679 (2016)
    2. M. Bibes, A. MY. L. Barth, Multiferroic: Towards a magnetoelectric memory [J], Nature Materials, 7, 425-426. (2008)
    3. Y. Zhou, D. Maurya, Y. Yan, G. Srinivasan, E. Quandt, S. Priya, Self-Biased Magnetoelectric Composites: An Overview and Future Perspectives, Energy Harvesting and Systems 2015.
    4. K. H. Cho, S. Priya, Direct and converse effect in magnetoelectric laminate composites, Applied Physics Letters, 98, 232904 (2011).
    5. R. A. Islam, C. B. Rong, J. P. Liu, S. Priya, Effect of gradient composite structure in cofired bilayer composites of Pb (Zr0.56Ti0.44) O3-Ni0.6Zn0.2Cu0.2Fe2O4 system on magnetoelectric coefficient, Journal of materials science, 43,6337-6343 (2008).
    6. K. H. Lam, C. Y. Lo, H. L. W. Chan, Frequency response of magnetoelectric 1-3 type composites, journal of applied physics, 107, 093901 (2010).
    7. R. A. Islam, Y. Ni, A. G. Khachaturyan, S. Priya, Giant magnetoelectric effect in sintered multilayered composite structure, Journal of Applied Physics, 104, 044103 (2008).
    8. A. McDannald, M. Staruch, G. Sreenivasulu, C. Cantoni, G. Srinivasan, M. Jain, Magnetoelectric coupling in solution derived 3-0 type PbZr0.52Ti0.48O3: xCoFe2O4 nanocomposite films, Applied Physics Letters, 102, 122905 (2013).
    9. N. M. Aimon, D. H. Kim, X. Sun, C. A. Ross, Multiferroic Behavior of Templated BiFeO3-CoFe2O4 Self-Assembled Nanocomposites, ACS applied materials & interfaces, 7, 2263-2268 (2015).
    10. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, Knöchel, R. Knöchel, E. Quandt, D. Meyners, Exchange biasing of magnetoelectric composites, Nature materials, 11, 523-529 (2012).
    11. K. Raidongia, A.Nag, A. Sundaresan, C. N. R. Rao, Multiferroic and magnetoelectric properties of core-shell CoFe2O4-BaTiO3 nanocomposites, Applied Physics Letters, 97, 062904 (2010).
    12. R. Liu, Y. Zhao, R. Huang, Y. Zhao, H. Zhou, Multiferroic ferrite/perovskite oxide core/shell nanostructures, Journal of Materials Chemistry, 20, 10665-10670 (2010).
    13. M. Liu, X. Li, H. Imrane, Y. Chen, T. Goodrich, Z. Cai, K. S. Ziemer, J. Y. Huang, N. X. Sun, Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowire, Applied physics letters, 90, 152501 (2007).
    14. S. Xie, F. Ma, Y. Liu, J. Li, Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling, Nanoscale, 3, 3152-3158 (2011).
    15. S. H. Xie, J. Y. Li, Y. Y. Liu, L. N. Lan, G. Jin, Y. C. Zhou, Electrospinning and multiferroic properties of NiFe2O4-Pb(Zr0.52Ti0.48)O3 composite nanofibers, Journal of Applied Physics, 104, 024115 (2008).
    16. J. S. Andrew, J. D. Starr, M. A. Budi, Prospects for nanostructured multiferroic composite materials, Scripta Materialia, 74, 38-42 (2014).
    17. H. Palneedi, V. Annapureddy, S.Priya, J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications, Actuators, 5 (2016).
    18. M. Paluszek, D. Avirovik, Y. Zhou, S. Kundu, A. Chopra, R. Montague, S. Priya, Magnetoelectric composites for medical application. In composite Magnetoelectrics; G. Srinivasan, S. Priya, N. X. Sun, Eds.;Woodhead Publishing: Cambridge, UK, 2015; pp. 297-327
    19. C. Fang, J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao, H. Luo, Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composites, Journal of Physics D: Applied Physics, 48, 465002 (2015).
    20. D. G. Lee, S. M. Kim, Y. K. Yoo, J. H. Han, D. W. Chun, Y. C. Kim, J. Kim, K. S. Hwang, T. S. Kim, W. W. Jo, H. Kim, S. H. Song, J. H. Lee, Ultra-sensitive magnetoelectric microcantilever at a low frequency, Applied Physics Letters, 101, 182902 (2012).
    21. M. M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State and Materials Science, 2015, 40, 223-250.
    22. X. Xue, Z. Zhou, B. Peng, M. Zhu, Y. Zhang, W. Ren, T. Ren, X. Yang, T. Nan, X. N. Sun, et al. Electric field induced reversible 180o magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates. Scientific Reports, 2015, 5, 16480.
    23. K. h. j. Buschow, F. R. dr Boer, Physics of magnetism and magnetic materials, Kluwer Academic/Plenum Publisher, New York (2003).
    24. N. A. Spaldin, Magnetic materials: fundamentals and applications. Cambridge University Press (2010).
    25. W. Heisenberg, Zur theorie des ferromagnetismus, Zeitschrift fu ̈r Physik, 49, 619-636 (1928).
    26. B. D. Cullity, C. D. Graham, Introduction to magnetic materials, John Wiley & Sons (2011).
    27. W. H. Meiklejohn, C. P. Bean, New magnetic anisotropy, Physical review, 102, 1413 (1956).
    28. J. Nogués, I. K. Schukker, Exchange bias, Journal of Magnetism and Magnetic Materials, 192, 203-232 (1999).
    29. M. Kiwi, Exchange bias theory, Journal of Magnetism and Magnetic Materials, 234, 584-595 (2001).
    30. W. C. Röntgen, Ueber die durch Bewegung eignes im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft, Annalen der Physik, 271, 264-270 (1888).
    31. P. Curie, phénomènes physiques les considerations sur la symétrie fami-lières aux cristallographes, J. Phys. Theor, Appl., 3, 393-415 (1894).
    32. L. D. Landau, E. M. Lifshitz, J. B. Sykes, J. S. Bell, E. H. Dill, Electrodynamics of continuous media, 48-50 (1961).
    33. I. E. Dzyaloshinskii, On the magneto-electrical effect in antiferromagnetism, Soviet Physics Jetp-Ussr, 10, 628-629 (1960).
    34. D. N. Astrov, The magnetoelectric effect in antiferromagnetics, Sov. Phys. JETP, 11, 708-709 (1960).
    35. G. T. Rado, V. J. Folen, Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains, Physical Review Letters, 7, 310 (1960).
    36. M. Fiebig, Revival of the magnetoelectric effect, Journal of Physics D: Applied Physics, 38, R123 (2005).
    37. R. P. Santoro, R. E. Newnham, Survey of magnetoelectric materials, Massachysettsinst of Tech Cambridge Lab for Insulation Research (1966).
    38. W. F. Brown Jr, R. M. Hornreich, S. Shtrikman, Upper bound on the magnetoelectric susceptibility, Physical Review, 168, 574 (1968).
    39. V. Wadhawan, Introduction to ferroic materials ,CRC press (2000).
    40. G. A. Smolenskii, I. E. Chupis, Ferroelectromagnets, Soviet Physics Uspekhi, 25, 475 (1982).
    41. N. A.Hill, Why are there are so few magnetic ferroelectrics? , J. Phys. Chem. B. 104, 6694-6709 (2000).
    42. N. Ortega, A. Kumar, J. F. Scott, R. S. Katiyar, Multifunctional magnetoelectric materials for device application, Journal of Physics: Condensed Matter, 27, 504002 (2005).
    43. E. Ascher, H. Rieder, H. Schmid, H. Stössel, Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I, Journal of Applied Physics, 37, 1404-1405(1966).
    44. E. F. Bertaut, M. Mercier, Structure magnetique de MnYO3, Physics Letters, 5, 27-29 (1963).
    45. N. Ikeda, H. Ohsumi, K. Ishii, T. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horible, H. Kito, Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4, Nature, 436, 1136-1138 (2005).
    46. T. Kimura, T. Goto, H.shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization, nature, 426, 55-58 (2003).
    47. B. D. Tellegen, The gyrator, a new electric network element, Philips Res. Rep, 3, 81-101 (1948).
    48. J. Van Suchtelen, Product properties: a new application of composite materials, Philips Res. Rep, 27, 28-37 (1972).
    49. J. Van den Boomgaard, D. R. Terrell, R. A. J. Born, H. F. J. I. Giller, An in situ grown eutectic magnetoelectric composite material, Journal of Materials Science, 9,1705-1709 (1974).
    50. A. M. J. G. Van Run, D. R. Terrell, J. H. Scholing, An in situ grown eutectic magnetoelectric composite material, Journal of Materials Science, 9, 1710-1714(1974)
    51. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future direction, Journal of Applied Physics, 103, 031101 (2008).
    52. R. E. Newnham, D. P. Skinner, and L. E. Cross, Mater. Res. Bull. 13, 525 (1978).
    53. C. W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Lin, Coupled magnetic-electric properties and critical behavior in multiferroic particulate composites, Journal of applied physics, 94, 5930-5936 (2003).
    54. G. Gou, I. Grinberg, A. M. Rappe and J. M. Rondinelli, Lattice normal modes and electronic properties of the correlated metal LaNiO3, Phys. Rev. B. 84, 144101 (2011).
    55. R. D. Sánchez, M. T. Causa, A. Caneiro, A. Butera, M. Vallet-Regí, M. J. Sayagués, J. González-Calbet, F. García-Sanz and J. Rivas, Metal-insulator transition in oxygen-deficient LaNiO3-x perovskites, Phys. Rev. B, 54, 16574 (1996).
    56. H. Y. Lee, T. B. Wu, Crystallization kinetics of sputter-deposited LaNiO3 thin films on Si substrate, Journal of Materials Research, 8, 2291-2296 (1998).
    57. H. Y. Lee, K. S. Liang, C. H. Lee, T. B. Wu, Real-time x-ray scattering study of growth behavior of sputter-deposited LaNiO3 thin films on Si substrates. Journal of Materials Research, 13, 2606-2611 (2000).
    58. S. Zhao, F. Ma, Z. X. Song, K. W. Xu, the growth behavior and stress evolution of sputtering-deposited LaNiO3 thin film, Materials Science and Engineering A, 474, 134-139 (2008).
    59. F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Cryst. B46, 698-702, (1990).
    60. T. Shimada, T. Matsui, T. Xu, K. Arisue, Y. Zhang, J. Wang, T. Kitamura, Multiferroic nature of intrinsic point defects in BiFeO3: A hybrid Hartree-Fock density functional study, Physical Review, B93, 174107 (2016).
    61. C. Michel, J. M. Moresu, G. D. Achenbechi, R. Gerson, W. .J. James, THE ATOMIC STRUCTURE OF BiFeO3, Solid State Communications, Vol. 7, PP.701-704, (1969).
    62. Y. M. Venevtsev, G. S. Zhdanov, S. N. Solov'ev, Crystal chemical studies of substances with perovskite type structure and special dielectric, Soviet. Phys. Cryst. 5, 594 (1961).
    63. S. V. Kiselev, R. P. Ozerov, G. S. Zhdanov, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction, Soviet Physics Doklady, (1963).
    64. X. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3, Applied Physics Letters, 86, 062903 (2005).
    65. C. Ederer, N. A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B, 71, 060401 (2005).
    66. E. O. Wollan, W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1—x)La, xCa]MnO3, Physical Review, Volume 10, 2, (1955).
    67. D.C. Arnold, K. S. Knight, F. D. Morrison, P. Lightfoot, Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic phase. Phys Rev Lett, 102, 027602 (2009).
    68. D. C. Arnold, K. S. Knight, G. Catalan, S. A. T. Redfern, J. F. Scott, P. Lightfoot, The β to γ transition in BiFeO3: a powder neutron diffraction study. Adv Funct Mater, 20, 2116-23 (2010).
    69. G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, D. Viehland, Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl Phys Lett, 86(18),182905(2005).
    70. D. Ricinschi, K. Yun, M. Okuyama, A mechanism for the 150 µC cm-2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J Phys Condens Matter, 18, L97-L105 (2006).
    71. J. C. Yang, Q. He, S. J. Suresha, C. Y. Kuo, C. Y. Peng, R. C. Haislmaier, Orthorhombic BiFeO3. Phys Rev Lett,109, 247606 (2012).
    72. L. Yan, H. Cao, J. F. Li, D. Viehland, Triclinic phase in tilted (001) oriented BiFeO3 epitaxial thin films. Appl Phys Lett, 94, 132901 (2009).
    73. X. Chen, J. Wang, G. Yuan, D. Wu, J. Liu, J. Yin, Structure, ferroelectric and piezoelectric properties of multiferroic Bi0.875Sm0.125FeO3 ceramics. J Alloys Compd, 541,173-176 (2012).
    74. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic Bismuth Ferrite-based Materials for Multifunctional Applications: Ceramic Bulks, Thin Films and Nanostructures, Progress in Materials Science (2016).
    75. M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, High-performance lead-free piezoceramics with high curie temperatures. Adv Mater , 27, 6976-82 (2015).
    76. A. Miszczyk, K. Darowicki, Study of anticorrosion and microwave absorption properties of NiZn ferrite pigments, Anti-Corrosion Methods and Materials, Emerald Group Publishing, Limited, (2011).
    77. E. S. Kurt, M. W. John, Structure of Spinel, J. Am. Ceram. Soc., 82, 12, 3279–92 (1999).
    78. J. Gao, Y. Cui, Z. Yang, The magnetic properties of NixZn1−xFe2O4 films fabricated by alternative sputtering technology, Materials Science and Engineering: B, 110, 2, 111-114, (2004).
    79. N. D. Chaudhari, R. C. Kambale, D. N. Bhosale, S. S. Suryavanshi, S. R. Sawant, Thermal hysteresis and domain states in Ni-Zn ferrite synthesized by oxalate precursor method, Journal of Magnetism and Materials, 322, 1995-2005 (2010).
    80. S. Swann, Magnetron sputtering, Phys Technol, 19 (1988).
    81. M. Mahesh Kumar, A. Srinivas, S. V. Suryanarayana, G. S. Kumar, T. Bhimasankaram, An experimental setup for dynamic measurement of magnetoelectric effect, Bulletin of Materials Science, 21, 251-255 (1998).
    82. J. J. Bozzola, Electron Microscopy, John Wiley & Sons, Ltd. (2001)
    83. T. G. Knorr, R. W. Hoffmann, Dependence of Geometric Anisotropy in Thin Iron Films, Physical Review, 113, 1039-1046 (1959)
    84. D. Vicka, L.J. Friedricha, S.K. Dewa, M.J. Bretta, K. Robbiea, M. Setoa, T. Smyb, Self-shadowing and surface diffusion effects in obliquely deposited thin films, Thin Solid Films, 339, 88-94 (1999)
    85. C. Zhang, J. Hou, R. Rao, C. Yang, G. Ding, Effect of process parameters on the LaNiO3 thin film deposited by radio frequency magnetron sputtering, Thin Solid Films, 517, 6837-6840 (2009)
    86. T. F. Tseng, C. C. Yang, K. S. Liu, J. M. Wu, T. B. Wu, I. N. Lin, Crystallization Characteristics of LaNiO3 Layers and Their Effect on Pulsed Laser Deposited (Pb1-xLax)(ZryTi1-y)O3 Thin Films, Jpn. J. Appl, Phys, 35, 4743-4749 (1996)
    87. W.J. Lin, W.C. Chang, X. Qi, Exchange bias and magnetoresistance in an all-oxide spin-valve with multiferroic BiFeO3 as the pinning layer, Acta Materialia, 61, 7444-7453 (2013)
    88. F. C. M. Vandepol, F. R. Blom, T. H. J. A. Popma, R.F. PLANAR MAGNETRON SPUTTERED ZnO FILMS I: STRUCTURAL PROPERTIES, Thin Solid Films, 204, 349-364 (1991)
    89. C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu, T. B. Wu, Preparation of (100)-oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3, Applied Physics Letters, 66, 2643 (1995)
    90. N. Wakiya, T. Azuma, K. Shinozaki, N. Mizutani, Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering, Thin Solid Films, 410, 114–120 (2002)
    91. D. Vicka, L.J. Friedricha, S.K. Dewa, M.J. Bretta, K. Robbiea, M. Setoa, T. Smyb, Self-shadowing and surface diffusion effects in obliquely deposited thin film, Thin Solid Films, 339, 88-94 (1994)
    92. Z. G. Hu, Z. M. Huang, Y. N. Wu, Q. Zhao, G. S. Wang, J. H. Chu, Ellipsometric characterization of LaNiO3−x films grown on Si (111) substrates: Effects of oxygen partial pressure, Journal of Applied Physics, 95, 4036 (2004)
    93. Thickness dependent magnetic and ferroelectric properties of LaNiO3 buffered BiFeO3 thin films, S. Hussain, S. K. Hasanain, G. H. Jaffari, S. I. Shah, Current Applied Physics, 15, 194-200 (2015)
    94. A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4, J. V. D. Boomgaard, R. A. J. Born, Journal of Materials Science, 13, 1538-1548 (1978)
    95. D. Alikin, A. Turygin, A. Kholkin, V. Shur, Ferroelectric Domain Structure and Local Piezoelectric Properties of Lead-Free (Ka0.5Na0.5)NbO3 and BiFeO3-Based Piezoelectric Ceramics, Materials, 10(1), 47 (2017)
    96. G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Yu. I. Bokhan, and V. M. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides, Phys. Rev. B. 66, 029902 (2002)
    97. K. Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, M. Okuyama, Giant Ferroelectric Polarization Beyond 150 µC/cm2 in BiFeO3 Thin Film, Japanese Journal of Applied Physics, 43, 2 (2004)
    98. H. Ryu, P. Murugavel, J. H. Lee, S. C. Chae, T. W. Noh, Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films, Appl. Phys. Lett. 89, 102907 (2006)
    99. A. McDannald, M. Staruch, G. Sreenivasulu, C. Cantoni, G. Srinivasan, M. Jain, Magnetoelectric coupling in solution derived 3-0 type PbZr0.52Ti0.48O3:xCoFe2O4 nanocomposite films, Appl. Phys. Lett. 102, 122905 (2013)
    100. G. Srinivasan, E. T. Rasmussen, and R. Hayes, Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: The influence of zinc substitution in ferrites, Phys. Rev. B, 67, 014418 (2003)

    下載圖示 校內:2023-06-26公開
    校外:2023-06-26公開
    QR CODE