| 研究生: |
黃明志 Huang, Ming-Chih |
|---|---|
| 論文名稱: |
使用光體積變化描記圖偵測飢餓狀態 Using Photoplethysmography for Hunger Detection |
| 指導教授: |
侯廷偉
Hou, Ting-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 飢餓 、光體積變化描記圖 、心脈 、人工智慧 |
| 外文關鍵詞: | Hungry, Photoplethysmography, Heart pulse, AI |
| 相關次數: | 點閱:219 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究試圖提出一套方法,使用光體積變化描記圖元件之穿戴式硬體,以非侵入式的量測方式,搭配資料分析及人工智慧,判斷佩戴此裝置的使用者,處於飯前或飯後的狀態。
本研究第一階段先取得十位使用者在飯前與飯後的量測資料。第二階段則提出二種演算法,用以分析飯前與飯後訊號的特性,並加以判斷狀態。第一種演算法使用資料分析方法進行比較,第二種演算法使用人工智慧學習,並提出一種創新的資料疊置圖形模式,將資料疊置後的圖形,導入人工智慧學習。第三階段則使用本研究所述的裝置,經過十位受測者實驗,在使用第一種一般資料方法進行辨識時,辨識率最低達59.32%,在使用第二種演算法,輔以人工智慧訓練後,辨識率可達90.83% 以上。
This research proposes an approach, using wearable non-invasive hardware with photoplethysmography (PPG) component, combined with data analysis and artificial intelligence, to determine whether the user is in a pre-meal (hungry) or post-meal state.
In the first stage of this research, ten volunteers’ pre-meal and post-meal signals were recorded using the device. In the second stage, two algorithms are proposed to analyze the signals to determine their states. The first algorithm uses data analysis methods, and the second algorithm uses artificial intelligence. An innovative overlay method is proposed. This method cuts and overlaps a fixed period of signal waveforms. The first data analysis method has a recognition rate as low as 59.32%. The second method, using artificial intelligence for identification, has a recognition rate of more than 90.83%.
[1] Z. Zhang, "Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint Sparse Spectrum Reconstruction," IEEE Transactions on Biomedical Engineering, vol. 62, no. 8, pp. 1902-1910, Aug. 2015.
[2] S. C. Huang, P. H. Hung, C. H. Hong, H. M. Wang, "A New Image Blood Pressure Sensor Based on PPG, RRT, BPTT, and Harmonic Balancing," IEEE Sensors Journal, vol. 14, no. 10, pp. 3685-3692, Oct. 2014.
[3] C. T. Chu, H. K. Chiang, J. J. Hung, "Dynamic Heart Rate Monitors Algorithm for Reflection Green Light Wearable Device," in Signal Processing, Computer Networks and Telecommunications, pp.438-445, Okinawa, Japan, 2015.
[4] E. Abe, H. Chigira, K. Fujiwarai, T. Yamakawa, M. Kano, "Heart Rate Monitoring by A Pulse Sensor Embedded Game Controller," in Asia-Pacific Signal and Information Processing Association, pp.1266-1269, Hong Kong, 2015.
[5] M. I. Friedman, E. M. Stricker, "The Physiological Psychology of Hunger : A Physiological Perspective," Psychological Review, vol. 83, no. 6, pp. 409-431, 1976.
[6] S. Nicolaidis, P. Even, "Physiological determinant of hunger, satiation, and satiety," The American Journal of Clinical Nutrition, vol. 42, pp. 1083-1092, 1985.
[7] J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiological Measurement, vol. 28, pp. 1-39, 2007.
[8] J. W. Kang, Y. S. Park, H. Chang, W. Lee, S. P. Singh, W. Choi, L. H. Galindo, R. R. Dasari, S. H. Nam, J. Park, P. T. C. So, "Direct observation of glucose fingerprint using in vivo Raman spectroscopy," Science Advances, vol. 6, no. 4, eaay5206, 4 Jan. 2020.
[9] C. Y. Li, Y. C. Chen, W. J. Chen, P. Huang, H. H. Chu, "Sensor -Embedded Teeth for Oral Activity Recognition," in International Symposium on Wearable Computers, pp.41-44, Zurich, Switzerland, 2013.
[10] A. Choi, H. Shin, "Photoplethysmography sampling frequency: pilot assessment of how low can we go to analyze pulse rate variability with reliability?," Physiological Measurement, vol. 38, no. 3, pp. 586-600, 2017. (DOI: 10.1088/1361-6579/aa5efa)
[11] S. Mahdiani, V. Jeyhani, M. Peltokangas, A. Vehkaoja, "Is 50 Hz high enough ECG sampling frequency for accurate HRV analysis?," 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5948-5951, 2015.
[12] D. Fujita, A. Suzuki, "Evaluation of the Possible Use of PPG Waveform Features Measured at Low Sampling Rate," IEEE Access, vol. 7, pp. 58361-58367, May 2019.
[13] Wikipedia, "Heart rate," [Online]. Available: https://en.wikipedia.org/wiki/Heart_rate. [Accessed : Feb. 15 2020].
[14] J. Murphy, Y. Gitman, "PulseSensor Open Hardware Project," [Online]. Available: https://pulsesensor.com/pages/open-hardware. [Accessed : Feb. 28 2020].
[15] Broadcom, "APDS-9005," [Online]. Available: https://docs.broadcom.com/doc/AV02-0080EN. [Accessed : Feb. 28 2020].
[16] J. Murphy, Y. Gitman, "PulseSensor Datasheet," [Online]. Available: https://cdn.shopify.com/s/files/1/0100/6632/files/Pulse_Sensor_Data_Sheet.pdf. [Accessed : Feb. 28 2020].
[17] Arduino, "Arduino Nano," [Online]. Available: https://store.arduino.cc/usa/arduino-nano. [Accessed : Feb. 15 2020].
[18] Microchip, "ATmega328p," [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf. [Accessed : Feb. 15 2020].
[19] FTDIchip, "FT232R," [Online]. Available: https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf. [Accessed : Mar. 7 2020].
[20] 陳坤明, "電子元件的雜訊從何而來, 國家奈米元件實驗室," 2016. [Online]. Available: http://www.ndl.org.tw/docs/publication/23_4/pdf/E3.pdf. [Accessed : Jan. 23 2020].
[21] Wikipedia, "RS-232," [Online]. Available: https://zh.wikipedia.org/wiki/RS-232. [Accessed : Feb. 22 2020].
[22] TensorFlow, "Convolutional Neural Network (CNN)," [Online]. Available: https://www.tensorflow.org/tutorials/images/cnn. [Accessed : Mar. 5 2020].
[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, "Rethinking the Inception Architecture for Computer Vision," [Online]. Available: https://arxiv.org/abs/1512.00567. [Accessed : May. 9 2020].
[24] Microchip, "MCP6001," [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/MCP6001-1R-1U-2-4-1-MHz-Low-Power-Op-Amp-DS20001733L.pdf. [Accessed : Mar. 1 2020].
校內:2025-08-08公開