| 研究生: |
龔冠臣 Kung, Kuan-Chen |
|---|---|
| 論文名稱: |
純鈦表面微弧放電生成多孔含鍶氧化皮膜之表面特性研究 A Study on the Surface Characteristics of Porous Oxide Coatings Incorporating Strontium on Titanium by Micro-arc Oxidation |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 李澤民 Lee, Tzer-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 鈦 、微弧氧化 、鍶 、生物活性 、熱處理 |
| 外文關鍵詞: | titanium, micro-arc oxidation (MAO), strontium, bioactivity, heat treatment |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於純鈦及其合金具有出色的化學穩定性與生物相容性,因此經常廣泛應用於牙科與骨科領域中。然而於臨床應用中,純鈦及其合金仍被視為生物惰性材料,因此無法與人體組織產生化學鍵結。微弧氧化方法是一種能夠增進純鈦表面性質的表面改質技術,因此本研究係利用微弧氧化技術來製備含鍶之孔洞氧化皮膜,並探討其氧化皮膜之物理化學特性、生物活性、抗腐蝕性質與細胞生理反應。此外,再經由適當的熱處理更能夠增進其機械性質。
物理化學性質係利用電子顯微鏡、能量散射光譜儀、薄膜繞射儀、化學分析電子儀與粗糙度量測儀進行量測。生物活性是於材料表面形成類骨磷灰石,亦是材料生物相容的指標之一,而其評估方式係將試片浸泡於人體模擬體液中,以觀測試片表面是否具有形成類骨磷灰石之能力。另外於人工植體的臨床應用中,其氧化皮膜與植體間的附著力是一非常重要的因素,因此微弧氧化皮膜與基材間之附著力將以刮痕試驗來評估。細胞方面評估將分成兩部分來測試,分別為細胞形態的表現與細胞增生試驗。
由電子顯微鏡觀測試片表面為一均勻孔洞結構,微弧氧化皮膜經過熱處理後,顯示出經800°C熱處理後出現三鈣磷酸鹽的相組成,推測應是由非結晶相結晶化所組成,但是並沒有發現含鍶氫氧基磷灰石的結晶相;另外表面形貌並沒有因為熱處理而有所改變。再經由浸泡人體模擬體液檢測,顯示出經400°C熱處理後之含鍶微弧氧化皮膜仍能形成類骨磷灰石,然而類骨磷灰石並不會形成於800°C熱處理後之試片表面,可能是氧化皮膜結晶後降低了類骨磷灰石形成的能力。此外,刮痕試驗試驗顯示出微弧氧化皮膜與基材間之附著力隨著熱處理溫度增加而增加;然而未經熱處理的微弧氧化皮膜附著力已經足以應用於臨床應用上。
微弧氧化皮膜之厚度介於3.70-3.79 μm之間;而粗糙度則介於0.31-0.34 μm之間。另外,其相組成結果發現微弧氧化皮膜係由氧化鈦組成,其中包括銳鈦礦與金紅石兩種相,另外利用能量散射光譜儀與化學分析電子儀能夠發現鈣、磷與鍶鑲嵌於孔洞氧化皮膜中。將微弧氧化皮膜試片置於人體模擬體液中一天後,發現有沉澱物沉澱於試片表面;而浸泡七天後,發現其沉澱物幾乎覆蓋試片表面。其沉澱物發現具有纖維狀之結構,並經由薄膜繞射儀鑑定其相組成為磷灰石;顯示出含鍶之微弧氧化皮膜能誘導類骨磷灰石於表面成長。於抗腐蝕方面,微弧氧化皮膜於人體模擬體液中比未經處理之純鈦表面有更佳的腐蝕電位,在金屬表面鈍化區內,微弧氧化皮膜亦有較低之電流密度;其結果顯示出微弧氧化皮膜的確能夠提供內部金屬之抗腐蝕之功能。另外,由於二氧化鈦形成於純鈦表面以保護純鈦,因此純鈦之極化阻抗則高於微弧氧化皮膜;而鍶的導電度優於鈣,因此隨著微弧氧化皮膜中的鍶含量增加,微弧氧化皮膜之極化阻抗則有下降的趨勢。細胞培養測試方面發現含有不同鍶含量之微弧氧化皮膜,並不會影響細胞初期貼附之細胞形態,另外培養一天與七天後,亦不會影響其細胞數目。然而於培養十四天後,含鍶1%與5%之微弧氧化皮膜的細胞增生數目明顯高於未含鍶之微弧氧化層,但是含鍶10%之微弧氧化皮膜則無益於細胞增長。
綜合上述實驗可歸納本研究之成果。(1)將不同含量的鍶鑲嵌於微弧氧化皮膜中,並不會改變物理化學性質,但是能有助於細胞之生理反應。(2)對於臨床應用上,含鍶之微弧氧化皮膜具有良好生物活性,並能提供抗腐蝕之特性。(3)於適當的熱處理後,不僅能夠增加含鍶之微弧氧化皮膜之機械性質,亦能夠維持其生物活性。
Titanium and its alloys are widely used in dental and orthopedic fields due to their excellent chemical stability and biocompatibility. Because they are considered as bio-inert materials in clinical use, it is difficult to achieve a chemical bonding with bone tissue. The micro-arc oxidation (MAO) technique is a modifiable method to improve surface characteristics of titanium. This study focuses on the MAO coatings formed in the electrolytes with different strontium content. Several properties of MAO coatings were investigated including physicochemical characteristics, bioactivity, corrosion resistance, and cell behavior. Besides, an appropriate heat treatment is an effective method to improve the mechanical property.
The physicochemical characteristics were investigated using scanning electron microscope (SEM) observation, energy dispersive X-ray spectrometer (EDS), thin film X-ray diffraction (TF-XRD) analysis, electron spectroscopy for chemical analysis (ESCA) and surface roughness test. The formation of an apatite phase generated on the surface of materials has been suggested to be indicative of biocompatibility. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF). In clinical application, the adhesion between the coating and the substrate is important factor for dental implants and artificial joint prosthesis. The adhesion strength was evaluated using scratch test. Cell behavior included morphology observation by SEM and number count by methylthiazoletetrazolium assay of the cells.
Using the SEM, the surface morphology exhibited uniform porous structure on titanium. After heat treatment, the TF-XRD results indicate that the tricalcium phosphate (Ca3(PO4)2) phase is formed at a temperature of 800°C, and this could be attributed to crystallization of amorphous phase. SEM results show that the surface morphology does not change. However, the peak of strontium-substituted hydroxyapatite was not observed. After soaking in simulated body fluid (SBF), the apatite layer formed on the surface of 400°C-treated MAO coatings containing strontium, but the formation of apatite layer was not found in all kinds of 800°C-treated specimens. The crystallization of coatings would inhibit the ability of apatite formation. Furthermore, the scratch test results reveal that the adhesion strength between the coatings and the substrate increases with increasing heat treatment temperature. The adhesion strength of MAO coatings without heat treatment is sufficient to use in clinical applications.
The average thickness of all oxide coatings is from 3.70 to 3.79 μm, and the surface roughness of all specimens is from 0.31 to 0.34 μm. The TF-XRD results indicated that phase of MAO coatings was anatase and rutile. The calcium, phosphorus, and strontium were detected in the oxide coatings by EDS and ESCA. It indicated that calcium, phosphorus, and strontium were amorphous phase in the oxide coatings. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using TF-XRD. The results show that MAO coatings incorporating strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, oxide coatings exhibited a more noble corrosion potential (Ecorr) than that of titanium in SBF. In the passive region, the current density of oxide coatings was lower than that of titanium. The phenomenon showed that MAO coatings provided for a layer of corrosion resistance. Owing to forming TiO2 on the titanium surface, the polarization resistance of titanium is higher than oxide coatings. Besides, the polarization resistance of oxide coatings decreased with increasing strontium contents because strontium conductivity is higher than calcium. Cell culture experiments demonstrate that MAO coating formed in the electrolytes with different strontium content would not alter initial cell morphology and 1-day and 7-day cell numbers. The cell proliferation of coatings containing 1% or 5% strontium content at 14-day culture was higher than coatings without strontium content at 14-day culture, but the higher strontium content (10%) could not be beneficial to cell growth.
All findings in this study indicated that (1) strontium incorporated into MAO coatings did not change the physicochemical characteristics but exhibited an effect on biological responses. (2) MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications. (3) MAO coatings containing strontium with optimal heat treatment could improve mechanical properties and maintain the bioactivity and cell responses.
[1] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. Biomaterials science: An introduction to materials in medicine 2nd Edition, Elsevier Academic Press, Amsterdam, 2004, pp.1-9.
[2] F. Watari, A. Yokoyama, F. Saso, M. Uo, T. Kawasaki. Fabrication and properties of functionally graded dental implant. Composities Part B, 28B (1997) 5-11.
[3] T.M. Lee. Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution. J. Mater. Sci.: Mater. Med., 17 (2006) 15-27.
[4] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen. Titanium in medicine, Springer, Berlin, Heidelberg, 2001, pp.714, 783, 834.
[5] C.H. Machnee, W.C. Wagner, M.J. Jaarda, B.R. Lang. Identification of oxide layers of commercially pure titanium in response to cleaning procedures. Int. J. Oral Maxillofac. Implants, 8 (1993) 529-532.
[6] J.E. Ellingsen, S.P. Lyngstadaas. Bio-implant interface: Improving biomaterials and tissue reactions, CRC Press, Boca Raton, Florida, 2003, pp.323-324.
[7] P. Li, I. Kangasniemi, K. de Groot, T. Kokubo. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J. Am. Ceram. Soc., 77 (1994) 1307-1312.
[8] S.C. Verberckmoes, G.J. Behets, L. Oste, A.R. Bervoets, L.V. Lamberts, M. Drakopoulos, A. Somogyi, P. Cool, W. Dorriné, M.E. De Broe, P.C. D’Haese. Effects of strontium on the physicochemical characteristics of hydroxyapatite. Calcif. Tissue Int., 75 (2004) 405-415.
[9] P.J. Meunier, C. Roux, E. Seeman, S. Ortolani, J.E. Badurski, T.D. Spedtor, J. Cannata, A. Balogh, E.-M. Lemmel, S. Pors-Nielsen, R. Rizzoli, H.K. Genant, J.-Y. Reginster. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med., 350 (2004) 459-468.
[10] T. Kanno, J.-I. Horiuchi, M. Kobayashi, Y. Motogami, T. Akazawa. Characteristics of the carbonate ions incorporated into calcium-, partially-strontium-substituted and strontium apatites. J. Mater. Sci. Lett., 18 (1999) 1343-1345.
[11] G.X. Ni, W.W. Lu, B. Tang, A.H.W. Ngan, K.Y. Chiu, K.M.C. Cheung, Z.Y. Li, K.D.K. Luk. Effect of weight-bearing on bone-bonding behavior of strontium-containing hydroxyapatite bone cement. J. Biomed. Mater. Res., 83A (2007) 570-576.
[12] X.L. Zhu, K.H. Kim, J.L. Ong, Y.S. Jeong. Surface analysis of anodic oxide films containing phosphorus on titanium. Int. J. Oral Maxillofac. Implants, 17 (2002) 331-336.
[13] P.J. Marie. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos. Int., 16 (2005) S7-S10.
[14] C.T. Wong, Q.Z. Chen, W.W. Lu, J.C.Y. Leong, W.K. Chan, K.M.C. Cheung, K.D.K. Luk. Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo. J. Biomae. Mater. Res., 70A (2004) 428-435.
[15] D.G. Guo, K.W. Xu, X.Y. Zhao, Y. Han. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials, 26 (2005) 4073-4083.
[16] G. Boivin, D. Farlay, M.T. Khebbab, X. Jaurand, P.D. Delmas, P.J. Meunier. In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos. Int., 21 (2010) 667-677.
[17] F. Kraeber-Bodéré, L. Campion, C. Rousseau, S. Bourdin, J.-F. Chatal, I. Resche. Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur. J. Nucl. Med., 27 (2000) 1487-1493.
[18] J.W. Park. Increased bone apposition on a titanium oxide surface incorporating phosphate and strontium. Clin. Oral Impl. Res., 22 (2011) 230-234.
[19] Y.F. Li, G. Feng, Y. Gao, E. Luo, X.G. Liu, J. Hu. Strontium ranelate treatment enhances hydroxyapatite-coated titanium screws fixation in osteoporotic rats. J. Orthop. Res., 28 (2010) 578-582.
[20] N. Lakhkar, E.A.A. Neel, V. Salih,J.C. Knowles. Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells. J. Biomater. Appl., 25 (2011) 877-893.
[21] T. Kitsugi, T. Nakamura, M. Oka, Y. Senaha, T. Coto, T. Shibuya. Bone-bonding behavior of plasma-sprayed coatings of bioglass, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J. Biomed. Mater. Res., 30 (1996) 261-269.
[22] K.H. Kim, R. Narayanan, T.R. Rautray. Surface modification of titanium for biomedical applications, Nova Science, New York, 2010, pp.53-63.
[23] L.A. de Sena, M.C. de Andrade, A.M. Rossi, G. de Almeida Soares. Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. J. Biomed. Mater. Res., 60 (2002) 1-7.
[24] X. Zhu, K.H. Kim, Y. Jeong. Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials, 22 (2001) 2199-2206.
[25] D.J. Lin, M.T. Tsai, T.M. Shieh, H.L. Huang, J.T. Hsu, Y.C. Ko, L.J. Fuh. In vitro antibacterial activity and cytocompatibility of bismuth doped micro-arc oxidized titanium. J. Biomater. Appl., 27 (2013) 553-563.
[26] S. Cheng, D. Wei, Y. Zhou, H. Guo. Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium. Ceram. Int., 37 (2011) 1761-1768.
[27] Y.T. Sul, C.B. Johansson, T. Albrektsson. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int. J. Oral Maxillofac. Implants, 17 (2002) 625-634.
[28] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. Biomaterials science: An introduction to materials in medicine 2nd Edition, Elsevier Academic Press, Amsterdam, 2004, pp.67-233.
[29] K.H. Kim, R. Narayanan, T.R. Rautray. Surface modification of titanium for biomedical applications, Nova Science, New York, 2010, pp.8-13.
[30] J. Park, R.S. Lakes. Biomaterials: an introduction 3rd Edition, Springer, New York, 2007, pp.100-221.
[31] J. Black. Biological performance of materials: fundamentals of biocompatibility 2nd Edition, Marcel Dekker, New York, 1992, pp.14-17.
[32] I.G. Macara. Vanadium - an element in search of a role. Trends Biochem. Sci., 5 (1980) 92-94.
[33] H.S. Dobbs, M.J. Minski. Metal ion release after total hip replacement. Biomaterials, 1 (1980) 193-198.
[34] P.R. Bouchard, B. Jonathan, B.A. Albrecht, R.E. Kaderly, J.O. Galante, B.U. Pauli. Carcinogenicity of CoCrMo (F-75) implants in the rat. J. Biomed. Mater. Res., 32 (1996) 37-44.
[35] J.L. Johnson, H.P. Jones, K.V. Rajagopalan. In vitro reconstitution of demolybdosulfite oxidase by a molybdenum cofactor from rat liver and other sources. J. Biol. Chem., 252 (1977) 4994-5003.
[36] S.V. Bhat. Biomaterials 2nd Edition, Alpha Science International, Harrow, 2005, pp.59-60.
[37] R. Lakes. Materials with structural hierarchy. Nature, 361 (1993) 511-515.
[38] L. Denardo, G. Raffaini, F. Ganazzoli, R. Chiesa. in R. Williams (eds.), Surface modification of biomaterials: Methods, analysis and applications, Woodhead, Cambridge, 2012, pp.102-142.
[39] A. Ravaglioli, A. Krajewski. Bioceramics: materials, properties, applications, Chapman & Hall Press, London, 1992, pp.44-45.
[40] S.D. Cook, K.A. Walsh, R.J. Haddad. Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants. Clin. Orthop. Rel. Res., 193 (1985) 271-280.
[41] T. Albrektsson, P.-I. Brånekmark, H.-A. Hansson, J. Lindström. Osseointegrated titanium implants. Acta Orthop. Scand., 52 (1981) 155-170.
[42] C. Johansson, J. Lausmaa, M. Ask, H.-A. Hansson, T. Albrektsson. Ultra-structural differences of the interface zone between bone and Ti6Al4V or commercially pure titanium. J. Biomed. Eng., 11 (1989) 3-8.
[43] J.W. McCutchen, J.P. Collier, M.B. Mayor. Osseointegration of titanium implants in total hip arthroplasty. Clin. Orthop. Rel. Res., 261 (1990) 114-125.
[44] G.L. de Lange, C. de Putter, F.L.J.A. de Wijs. Histological and ultrastructural appearance of the hydroxyapatite-bone interface. J. Biomed. Mater. Res., 24 (1990) 829-845.
[45] F. Barbon, B. Locardi, M. Verità, C. Gabbi, C. Grispigni, P.T. Leali, E.B. del Prever, P. Gallinaro, G. Cerulli, G.L. del Bue, G. Lualdi, E.V. Finzi, P. Giusti, F. Marotti. Biocompatibility and osteogenetic characteristics of new biocompatible glasses. Biomaterials, 12 (1991) 565-568.
[46] T. Kitsugi, T. Yamamuro, T. Kokubo. Analysis of A•W glass-ceramic surface by micro-beam x-ray diffraction. J. Biomed. Mater. Res., 24 (1990) 259-273.
[47] S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo. Bone bonding mechanism of β-tricalcium phosphate. J. Biomed. Mater. Res., 25 (1991) 1303-1315.
[48] B.F. Kavanagh, D.M. Ilstrup, and R.H. Fitzgerald. Revision total hip arthroplasty. J. Bone Joint Surg., 67A (1985) 517-526.
[49] M. Semlitsch. Classic and new titanium alloys for production of artificial hip joints, Proceedings: 1986 International Conference on Titanium Products and Applications, Titanium Development Association, Dayton, Ohio, 1986, pp.721-740.
[50] ASTM Standard B348, Standard specification for titanium and titanium Alloy bars and billet, ASTM International, West Conshohocken, PA, USA, (2013).
[51] ASTM Standard F67, Standard specification for titanium and titanium Alloy bars and billet, ASTM International, West Conshohocken, PA, USA, (2013).
[52] ASTM Standard F136, Standard specification for wrought Titanium-6Aluminum-4Vanadium ELI (extra low Interstitial) Alloy for surgical implant applications, ASTM International, West Conshohocken, PA, USA, (2012).
[53] H. Hahn, W. Palich. Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J. Biomed. Mater. Res., 4 (1970) 391-399.
[54] F.A. Young. Porous titanium dental implants. J. Biomed. Mater. Res., 5 (1974) 401-407.
[55] D.P. Rivero, J. Fox, A.K. Skipor, R.M. Urban, J.O. Galante. Calcium phosphate-coated porous titanium implants for enhanced skeletal fixation. J. Biomed. Mater. Res., 22 (1988) 191-201.
[56] J.L. Ong, D.C.N. Chan. Hydroxypatite and their use as coatings in dental implants: A review. Crit. Rev. Biomed. Eng., 28 (2000) 667-707.
[57] S.V. Dorozhkin. in H. Bourg and A. Lisle (eds.), Biomaterials developments and applications, Nova Science Publishers, New York, 2010, pp. 8.
[58] K. Anselme, Osteoblast adhesion on biomaterials. Biomaterials, 21 (2000) 667-681.
[59] W. Suchanek, M. Yoshimura. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., 13 (1998) 94-117.
[60] S.V. Dorozhkin. Calcium orthophosphates in nature, biology and medicine. Materials, 2 (2009) 399-498.
[61] C. Drouet, F. Bosc, M. Banu, C. Largeot, C. Combes, G. Dechambre, C. Estournès, G. Raimbeaux, C. Rey. Nanocrystalline apatites: From powders to biomaterials. Powder Technol., 190 (2009) 118-122.
[62] A. Piattelli, A. Scarano, L.D. Alberti, M. Piattelli. Bone-hydroxyapatite interface in retrieved hydroxyapatite-coated titanium implants: A clinical and histologic report. Int. J. Oral Maxillofac. Implants, 14 (1999) 233-238.
[63] A.A. Abdeltawab, M.A. Shoeib, S.G. Mohamed. Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions. Surf. Coat. Technol., 206 (2011) 43-50.
[64] P. Choudhury, D.C. Agrawal. Sol-gel derived hydroxyapatite coatings on titanium substrates. Surf. Coat. Technol., 206 (2011) 360-365.
[65] I. Demnati, M. Parco, D. Grossin, I. Fagoaga, C. Drouet, G. Barykin, C. Combes, I. Braceras, S. Goncalves, C. Rey. Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surf. Coat. Technol., 206 (2012) 2346-2353.
[66] N. Ohtsu, Y. Nakamura, S. Semboshi. Thin hydroxyapatite coating on titanium fabricated by chemical coating process using calcium phosphate slurry. Surf. Coat. Technol., 206 (2012) 2616-2621.
[67] A. Obata, T. Kasuga, J.R. Jones. Hydroxyapatite coatings incorporating silicon ion releasing system on titanium prepared using water glass and vaterite. J. Am. Ceram. Soc., 94 (2011) 2074-2079.
[68] Z.X. Zhang, J.Y. Sun, H.J. Hu, Q.M. Wang, X.Y. Liu. Osteoblast-like cell adhesion on porous silicon-incorporated TiO2 coating prepared by micro-arc oxidation. J. Biomed. Mater. Res. Part B: Appl. Biomater., 97B (2011) 224-234.
[69] W. Xia, C. Lindahl, J. Lausmaa, P Borchardt, A. Ballo, P. Thomsen, H. Engqvist. Biomineralized strontium-substituted apatite titanium dioxide coating on titanium surfaces. Acta Biomater., 6 (2010) 1591-1600.
[70] G.X. Ni, Z.P. Yao, G.T. Huang, W.G. Liu, W.W. Lu. The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro. J. Mater. Sci.: Mater. Med., 22 (2011) 961-967.
[71] H.L. Rosenthal, M.M. Eves, O.A. Cochran. Common strontium concentration of mineralized tissues from marine and sweet water animals. Comp. Biochem. Physiol., 32 (1970) 445-450.
[72] H.L. Rosenthal, O.A. Cochran, M.M. Eves. Strontium content of mammalian bone, diet and excreta. Environ. Res., 5 (1972) 182-191.
[73] S. Pors Nielsen. The biological role of strontium. Bone, 35 (2004) 583-588.
[74] P. Ammann. Strontium ranelate: A novel mode of action leading to renewed bone quality. Osteoporos. Int., 16 (2005) S11-S15.
[75] E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos, P.J. Marie. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone, 18 (1996) 517-523.
[76] P. Ammann, V. Shen, B. Robin, Y. Mauras, J.-P. Bonjour, R. Rizzoli. Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J. Bone Miner. Res., 19 (2004) 2012-2020.
[77] S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas, C. Christiansen. Incorporation and distribution of strontium in bone. Bone, 28 (2001) 446-453.
[78] H.W. Kim, Y.H. Koh, Y.M. Kong, J.G. Kang, H.E. Kim. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. J. Mater. Sci.: Mater. Med., 15 (2004) 1129-1134.
[79] G.X. Ni, B. Shu, G.T. Huang, W.W. Lu, H.B. Pan. The effect of strontium incorporation into hydroxyapatites on their physical and biological properties. J. Biomed. Mater. Res. Part B: Appl. Biomater., 100B (2012) 562-568.
[80] F. Yang, D.Z. Yang, J. Tu, Q.X. Zheng, L.T. Cai, L.P. Wang. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating wnt/catenin signaling. Stem Cells, 29 (2011) 981-991.
[81] M. Tian, F. Chen, W. Song, Y.C. Song, Y.W. Chen, C.X. Wan, X.X. Yu, X.H. Zhang. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications. J. Mater. Sci.: Mater. Med., 20 (2009) 1505-1512.
[82] T.M. Lee, E. Chang, B.C. Wang, C.Y. Yang. Characteristics of plasma-sprayed bioactive glass coatings on Ti-6Al-4V alloy: an in vitro study. Surf. Coat. Technol., 79 (1996) 170-177.
[83] C.Y. Yang, R.M. Lin, B.C. Wang, T.M. Lee, E. Chang, Y.S. Hang, P.Q. Chen. In vitro and in vivo mechanical evaluations of plasma-sprayed hydroxyapatite coatings on titanium implants: The effect of coating characteristics. J. Biomed. Mater. Res., 37 (1997) 335-345.
[84] T.M. Lee, B.C. Wang, Y.C. Yang, E. Chang, C.Y. Yang. Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings: In vivo study. J. Biomed. Mater. Res., 55 (2001) 360-367.
[85] S. Yoriya, C.A. Grimes. Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies. J. Mater. Chem., 21 (2011) 102-108.
[86] K. Azumi, N. Yasui, M. Seo. Changes in the properties of anodic oxide films formed on titanium during long-term immersion in deaerated neutral solutions. Corrosion Sci., 42 (2000) 885-896.
[87] Y. Xin, J. Jiang, K. Huo, T. Hu, P.K. Chu. Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano, 3 (2009) 3228-3234.
[88] Y. Shin, S. Lee. A freestanding membrane of highly ordered anodic ZrO2 nanotube arrays. Nanotechnology, 20 (2009) 105301.
[89] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey. Plasma electrolysis for surface engineering. Surf. Coat. Technol., 122 (1999) 73-93.
[90] H.T. Chen, C.H. Hsiao, H.Y. Long, C.J. Chung, C.H. Tang, K.C. Chen, J.L. He. Micro-arc oxidation of β-titanium alloy: Structural characterization and osteoblast compatibility. Surf. Coat. Technol., 204 (2009) 1126-1131.
[91] Z.Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J.Z. Jiang, R.Z. Valiev, M. Qi, H.-J. Fecht. Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomater., 6 (2010) 2816-2825.
[92] H.T. Chen, C.J. Chung, T.C. Yang, I.P. Chiang, C.H. Tang, K.C. Chen, J.L. He. Osteoblast growth behavior on micro-arc oxidized β-titanium alloy. Surf. Coat. Technol., 205 (2010) 1264-1629.
[93] A.F. Yetim. Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surf. Coat. Technol., 205 (2010) 1757-1763.
[94] Y.Y. Yan, J.F. Sun, Y. Han, D.C. Li, K. Cui. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf. Coat. Technol., 205 (2010) 1702-1713.
[95] G.H. Zhou, H.Y. Ding, Y. Zhang, A.H. Liu, Y.B. Lin, Y.F. Zhu. Fretting wear study on micro-arc oxidation TiO2 coating on TC4 titanium alloys in simulated body fluid. Tribol. Lett., 40 (2010) 319-326.
[96] K.R. Shin, Y.G. Ko, D.H. Shin. Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation. J. Alloy. Compd., 509S (2011) S478-S481.
[97] C.J. Chung, H.Y. Long. Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses. Acta Biomater., 7 (2011) 4081-4087.
[98] A. Alsaran, G. Purcek, I. Hacisalihoglu, Y. Vangolu, Ö. Bayrak, I. Karaman, A. Celik. Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment. Surf. Coat. Technol., 205 (2011) S537-S542.
[99] H. Tang, Q. Sun, C.G. Yi, Z.H. Jiang, F.P. Wang. High emissivity coatings on titanium alloy prepared by micro-arc oxidation for high temperature application. J. Mater. Sci., 47 (2012) 2162-2168.
[100] T. Kokubo. in T. Yamamuro, L.L. Hench and J. Wilson (eds.), CRC Handbook of bioactive ceramics, CRC Press, Boca Raton, Florida, 1990, pp. 41-49.
[101] H. Ishizawa, M. Ogino. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J. Biomed. Mater. Res., 29 (1995) 1071-1079.
[102] K.C. Kung, T.M. Lee, J.L. Chen, T.S. Lui. Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation. Surf. Coat. Technol., 205 (2010) 1714-1722.
[103] J. Chen, W. Tong, Y. Cao, J. Feng, X. Zhang. Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. J. Biomed. Mater. Res., 34 (1997) 15-20.
[104] F.Y. Jin, P.K. Chu, K. Wang, J. Zhao, A.P. Huang, H.H. Tong. Thermal stability of titania films prepared on titanium by micro-arc oxidation. Mater. Sci. Eng. A, 476 (2008) 78-82.
[105] D.Q. Wei, Y. Zhou, D.C. Jia, Y.M. Wang. Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions. Surf. Coat. Technol., 201 (2007) 8723-8729.
[106] Y. Goueffon, L. Arurault, C. Mabru, C. Tonon, P. Guigue. Black anodic coatings for space applications Study of the process parameters, characteristics and mechanical properties. J. Mater. Process. Tech., 209 (2009) 5145-5151.
[107] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy. Surf. Coat. Technol., 130 (2000) 195-206.
[108] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 25 (2004) 2867-2875.
[109] B.C. Yang, M. Uchida, H.M. Kim, X.D. Zhang, T. Kokubo. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials, 25 (2004) 1003-1010.
[110] L. Saldaña, N. Vilaboa, G. Vallés, J. González, L. Munuera. Osteoblast response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res., 73A (2005) 97-107.
[111] W.C. Xue, J.L. Moore, H.L. Hosick, S. Bose, A. Bandyopadhyay, W.W. Lu, K.M.C. Cheung, K.D.K. Luk. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J. Biomed. Mater. Res., 79A (2006) 804-814.
[112] H. Ohgushi, M. Okumura, S. Tamai, E.C. Shors, A.I. Caplan. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: A comparative histomorphometric study of ectopic bone formation. J. Biomed. Mater. Res., 24 (1990) 1563-1570.
[113] Y. Yang, J. Magnay, L. Cooling, J.J. Cooper, A.J. El Haj. Effects of substrate characteristics on bone cell response to the mechanical environment. Med. Biol. Eng. Comput., 42 (2004) 22-29.
[114] W.C. Xue, H.L. Hosick, A. Bandyopadhyay, S. Bose, C.X. Ding, K.D.K. Luk, K.M.C. Cheung, W.W. Lu. Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surf. Coat. Technol., 201 (2007) 4685-4693.
[115] E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, G. Logroscino. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater., 3 (2007) 961-969.
[116] E.F. Ferraro, R. Carr, K. Zimmerman. A comparison of the effects of strontium chloride and calcium chloride on alveolar bone. Calcif. Tissue Int., 35 (1983) 258-260.
[117] E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos, P.J. Marie. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone, 18 (1996) 517-523.
[118] K. Qiu, X.J. Zhao, C.X. Wan, C.S. Zhao, Y.W. Chen. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials, 27 (2006) 1277-1286.
[119] P. Huang, F. Wang, K.W. Xu, Y. Han. Mechanical properties of titania prepared by plasma electrolytic oxidation at different voltages. Surf. Coat. Technol., 201 (2007) 5168-5171.
[120] C.Z. Chen, Q. Dong, H.J. Yu, X.B. Wang, D.G. Wang. Microstructure of porous TiO2 coating on pure Ti by micro-arc oxidation. Adv. Eng. Mater., 8 (2006) 754-759.
[121] K. Hayashi, T. Inadome, T. Mashima, Y. Sugioka. Comparison of bone-implant interface shear strength of solid hydroxyapatite and hydroxyapatite-coated titanium implants. J. Biomed. Mater. Res., 27 (1993) 557-563.
[122] R. Rohanizadeh, R.Z. LeGeros, M. Harsono, A. Bendavid. Adherent apatite coating on titanium substrate using chemical deposition. J. Biomed. Mater. Res., 72A (2005) 428-438.
[123] M.C. Kuo, S.K. Yen. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C, 20 (2002) 153-160.
[124] L. Łatka, L. Pawlowski, D. Chicot, C. Pierlot, F. Petit. Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surf. Coat. Technol., 205 (2010) 954-960.
[125] J.L. Arias, M.B. Mayor, J. Pou, Y. Leng, B. León, M. Pérez-Amor. Micro- and nano-testing of calcium phosphate coatings produced by pulsed laser deposition. Biomaterials, 24 (2003) 3403-3408.
[126] H. Ishizawa, M. Fujino, M. Ogino. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J. Biomed. Mater. Res., 29 (1995) 1459-1468.
[127] X. Nie, A. Leyland, H.W. Song, A.L. Yerokhin, S.J. Dowey, A. Matthews. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surf. Coat. Technol., 116-119 (1999) 1055-1060.
[128] D.J. Blackwood, K.H.W. Seah. Influence of anodization on the adhesion of calcium phosphate coatings on titanium substrates. J. Biomed. Mater. Res., 93A (2010) 1551-1556.
[129] C.S. Chang, T.M. Lee, C.H. Chang, J.K. Liu. The effect of microrough surface treatment on miniscrews used as orthodontic anchors. Clin. Oral Implant. Res., 20 (2009) 1178-1184.
[130] A. Cigada, M. Cabrini, P. Pedeferri. Increasing of the corrosion resistance of the Ti6Al4V alloy by high thickness anodic oxidation. J. Mater. Sci.: Mater. Med., 3 (1992) 408-412.
[131] H. Ishizawa, M. Ogino. Formation and characterization of anodic titanium oxide films containing Ca and P. J. Biomed. Mater. Res., 29 (1995) 65-72.
[132] J.W. Choi, S.J. Heo, J.Y. Koak, S.K. Kim, Y.J. Lim, S.H. Kim, J.B. Lee. Biological responses of anodized titanium implants under different current voltages. J. Oral. Rehabil., 33 (2006) 889-897.
[133] E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium. Acta Biomater., 5 (2009) 1356-1366.
[134] K. Shimizu, G.E. Thompson, G.C. Wood. The electrical breakdown during anodizing of high purity aluminium in borate solutions. Thin Solid Films, 92 (1982) 231-241.
[135] T.B. Van, S.D. Brown, G.P. Wirtz. Mechanism of anodic spark deposition. Am. Ceram. Soc. Bull., 56 (1977) 563-566.
[136] J.P. Schreckenbach, G. Marx, F. Schlottig, M. Textor, N.D. Spencer. Characterization of anodic spark-converted titanium surfaces for biomedical applications. J. Mater. Sci.: Mater. Med., 10 (1999) 453-457.
[137] K.H. Kim, N. Ramaswamy. Electrochemical surface modification of titanium in dentistry. Dent. Mater. J., 28 (2009) 20-36.
[138] Y. Han, S.H. Hong, K.W. Xu. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surf. Coat. Technol., 168 (2003) 249-258.
[139] J.H. Lee, S.E. Kim, Y.J Kim, C.S. Chi, H.J. Oh. Effects of microstructure of anodic titania on the formation of bioactive compounds. Mater. Chem. Phys., 98 (2006) 39-43.
[140] W.E.S. Unger, Th. Gross, O. Böse, A. Lippitz, Th. Fritz, U. Gelius. VAMAS TWA2 Project A2: evaluation of static charge stabilization and determination methods in XPS on non-conducting samples. Report on an inter-laboratory comparison. Surf. Interface Anal., 29 (2000) 535-543.
[141] P. Ducheyne, Q. Qiu. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 20 (1999) 2287-2303.
[142] K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisawa, Y. Kotoura, M. Oka. Bone-bonding ability of P2O5-Free CaO•SiO2 glasses. J. Biomed. Mater. Res., 25 (1991) 357-365.
[143] T. Kokubo. Bioactive glass ceramics: properties and applications. Biomaterials, 12 (1991) 155-163.
[144] H.J. Song, S.H. Park, S.H. Jeong, Y.J. Park. Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes. J. Mater. Process. Technol., 209 (2009) 864-870.
[145] Z.W. Zhao, X.Y. Chen, A.L. Chen, M.L. Shen, S.M. Wen. Synthesis of bioactive ceramic on the titanium substrate by micro-arc oxidation. J. Biomed. Mater. Res., 90A (2009) 438-445.
[146] J.F. Sun, Y. Han, K. Cui. Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surf. Coat. Technol., 202 (2008) 4248-4256.
[147] W.H. Song, Y.K. Jun, Y. Han, S.H. Hong. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 25 (2004) 3341-3349.
[148] J. Christoffersen, M. R. Christoffersen, N. Kolthoff, O. Bärenholdt. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone, 20 (1997) 47-54.
[149] A.L. Oliveira, R.L. Reis, P. Li. Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis. J. Biomed. Mater. Res. Part B Appl. Biomater., 83B (2007) 258-265.
[150] R.L.W. Messer, G. Tackas, J. Mickalonis, Y. Brown, J.B. Lewis, J.C. Wataha. Corrosion of machined titanium dental implants under inflammatory conditions. J. Biomed. Mater. Res. Part B Appl. Biomater., 88B (2009) 474-481.
[151] J. Baszkiewicz, D. Krupa, J. Mizera, J.W. Sobczak, A. Biliński. Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment. Vacuum, 78 (2005) 143-147.
[152] D. Krupa, J. Baszkiewicz, J. Mizera, T. Borowski, A. Barcz, J.W. Sobczak, A. Biliński, M. Lewandowska-Szumieł, M. Wojewódzka. Effect of the heating temperature on the corrosion resistance of alkali-treated titanium. J. Biomed. Mater. Res., 88A (2009) 589-598.
[153] Y.C. Wu, S.Y. Shaw, H.R. Lin, T.M. Lee, C.Y. Yang. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials, 27 (2006) 896-904.
[154] W.E. Yang, M.L. Hsu, M.C. Lin, Z.H. Chen, L.K. Chen, H.H. Huang. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. J. Alloy. Compd., 479 (2009) 642-647.
[155] D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, D. Buser. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. J. Biomed. Mater. Res., 40 (1998) 1-11.
[156] L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater., 23 (2007) 844-854.
[157] N.J. Hallab, K.J. Bundy, K. O’Connor, R.L. Moses, J.J. Jacobs. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng., 7 (2001) 55-71.
[158] M. Romanello, S. Crovella, M. Biasotto, D. Pirulli, C. Schmid, L. Moro. Biological evaluation of the effects of the surface roughness and composition of titanium discs on an immortalized human osteoblastic cell line. J. Appl. Biomater. Biomech., 1 (2003) 117-124.
[159] M.L.R. Schwarz, M. Kowarsch, S. Rose, K. Becker, T. Lenz, L. Jani. Effect of surface roughness, porosity, and a resorbable calcium phosphate coating on osseointegration of titanium in a minipig model. J. Biomed. Mater. Res., 89A (2009) 667-678.
[160] A. Wennerberg, C. Hallgren, C. Johansson, S. Danelli. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin. Oral Impl. Res., 9 (1998) 11-19.
[161] H.J. Rønold, S.P. Lyngstadaas, J.E. Ellingsen. Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials, 24 (2003) 4559-4564.
[162] A. Wennerberg, T. Albrektsson, B. Andersson, J.J. Krol. A histomorghometric study of screw-shaped and removal torque titanium implants with three different surface topographies. Clin. Oral Implamt. Res., 6 (1995) 24-30.
[163] D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials, 29 (2008) 970-983.
[164] C.C. Wang, Y.C. Hsu, F.C. Su, S.C. Lu, T.M. Lee. Effects of passivation treatments on titanium alloy with nanometric scale roughness and induced changes in fibroblast initial adhesion evaluated by a cytodetacher. J. Biomed. Mater. Res., 88A (2009) 370-383.
[165] X.L. Zhu, J. Chen, L. Scheideler, R. Reichl, J. Geis-Gerstorfer. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, 25 (2004) 4087-4103.
[166] M.D. Grynpas, E. Hamilton, R. Cheung, Y. Tsouderos, P. Deloffre, M. Hott, P.J. Marie. Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone, 18 (1996) 253-259.
[167] C. Capuccini, P. Torricelli, F. Sima, E. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I.N. Mihailescu, A. Bigi. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response. Acta Biomater., 4 (2008) 1885-1893.
[168] T. Morohashi, T. Sano, S. Yamada. Effects of strontium on calcium metabolism in rats I. A distinction between the pharmacological and toxic doses. Jpn. J. Pharmacol., 64 (1994) 155-162.
[169] M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura. Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal. J. Biomed. Mater. Res. Par B Appl. Biomater., 63 (2002) 522-530.
[170] X. Cui, H.N. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, T. Nakamura. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions. J. Mater. Sci.: Mater. Med., 19 (2008) 1767-1773.
[171] P.M. Kumar, S. Badrinarayanan, M. Sastry. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films, 358 (2000) 122-130.
[172] Y. Zhao, T. Xiong, W. Huang. Effect of heat treatment on bioactivity of anodic titania films. Appl. Surf. Sci., 256 (2010) 3073-3076.
[173] S.R. Radin, P. Ducheyne. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation. J. Biomed. Mater. Res., 27 (1993) 35-45.
[174] A. El-Ghannam, P. Ducheyne, I.M. Shapiro. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials, 18 (1997) 295-303.
[175] W. Xia, C. Lindahl, C. Persson, P. Thomsen, J. Lausmaa, H. Engqvist. Changes of surface composition and morphology after incorporation of ions into biomimetic apatite coatings. J. Biomater. Nanobiotechnol., 1 (2010) 7-16.
[176] D. Wei, Y. Zhou, D. Jia, Y. Wang. Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions. Surf. Coat. Technol., 201 (2007) 8723-8729.
[177] A.J. Salinas, J. Román, M. Vallet-Regí, J.M. Oliveira, R.N. Correia, M.H. Fernandes. In vitro bioactivity of glass and glass-ceramics of the 3CaO•P2O5–CaO•SiO2–CaO•MgO•2SiO2 system. Biomaterials, 21 (2000) 251-257.
[178] M.M. Pereira, A.E. Clark, L.L. Hench. Effect of texture on the rate of hrdeoxyapatite formation on gel-silica surface. J. Am. Ceram. Soc., 78 (1995) 2463-2468.
[179] J. Weng, Q. Liu, J.G.C. Wolke, D. Chang, K. DcGroot. The role of amorphous phase in nucleating bone-like apatite on plasma-sprayed hydroxyapatite coatings in simulated body fluid. J. Mater. Sci. Lett., 16 (1997) 335-337.
[180] E. Eisenbarth, P. Linez, V. Biehl, D. Velten, J. Breme, H.F. Hildebrand. Cell orientation and cytoskeleton organization of ground titanium surfaces. Biomol. Eng., 19 (2002) 233-237.
[181] J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, Z. Schwartz. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials, 19 (1998) 2219-2232.
[182] J. Takebe, S. Itoh, J. Okada, K. Ishibashi. Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. J. Biomed. Mater. Res., 51 (2000) 398-407.
[183] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K.W. Xu, H.F. Hildebrand. Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J. Biomed. Mater. Res., 68A (2004) 383-391.
[184] M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa. Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials, 17 (1996) 1771-1777.
[185] J.W. Park, Y.J. Kim, J.H. Jang. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Clin. Oral Impl. Res., 21 (2010) 398-408.