簡易檢索 / 詳目顯示

研究生: 陳致龍
Chen, Chih-Lung
論文名稱: 應用並聯電路於電流感測電阻器以改變其電阻值量測值之研究
Using Parallel Circuit to Change Measured Value of Resistance of Current Sensing Resistors
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 56
中文關鍵詞: 電流感測電阻器並聯電路設計電阻值溫度係數
外文關鍵詞: sensing resistor, parallel circuit, temperature coefficient of resistance
相關次數: 點閱:109下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功開發出一種新型電流感測電阻器及其量測方法,使其電阻值量測值之變化率於25℃與125℃的環境溫度變化時可在±10 ppm/℃的變化範圍內,但已知目前的一般型電流感測電阻器要達到在相同條件的變化範圍,其在設計上卻必須使用厚度更厚而且材料電阻率更低的歐姆電阻材料來製作,在製程上極為困難,不易開發。在本研究中證明可以利用一種並聯電路設計,將其製作在此電流感測電阻器中,其內部形成一個電路迴路,並在設計上將兩組電壓感測電極與電流電極分開,而使得這條增加的並聯線路並不在這個電流感測電阻器主要電流通過的路徑上,而是僅能分得部份小電流做為量測電壓差的用途,在量測該電阻器兩端的電壓差時並不會因為環境或電流感測電阻器內部的溫度上升而造成其電阻值量測值的變化率超出1%的規格。從實驗結果得知,一般型電流感測電阻器3 mΩ,其電阻值量測值在環境溫度為25℃與125℃時,該量測值的變化率平均值為134 ppm/℃,最大值為148 ppm/℃,最小值為117 ppm/℃,而在相同電阻值之新型電流感測電阻器其電阻值量測值的數據,在相同的環境溫度條件下,量測值變化率之平均值則為0 ppm/℃,最大值為10 ppm/℃,最小值為-10 ppm/℃,兩者的量測值變化率的平均值相差134 ppm/℃。由於在電流感測電阻器小型化及大功率的趨勢需求下,如何讓其電阻值在嚴苛的環境變化下能更穩定這是一個很重要的指標。利用電阻器內部形成一個電路迴路並且改變量測電壓的位置以降低該電流感測電阻器電阻值量測值的這個方法是一個很好的設計概念,未來電流感測電阻器這種被動元件仍然會朝尺寸更小,電阻值更低的方向設計,如能善加利用本研究的設計方法,不僅可以將電流感測電阻器的電阻值量測能更精準以便能確保應用此電流感測電阻器之功能的模組中其他電子零組件亦能正常運作,以提高穩定性並延長使用壽命,再者,更可以將生產流程簡化,提高競爭優勢。

    Using Parallel Circuit to Change Measured Value of Resistance of Current Sensing Resistors
    Advisor: Yu-Cheng Lin, Ph.D.
    Student: Chih-Lung Chen
    Department of Engineering Science College of Science
    SUMMARY
    This thesis presents a new current sense resistor and a measuring method to make the measured value of the current sense resistor within ± 10 ppm/℃ under a temperatures ranging from 25℃ and 125℃. The results reveal that when the temperature is within 25℃ and 125℃, the average resistance value of conventional 3 mΩ sensing resistor is 134 ppm/℃ (148 ppm/℃ in maximum and 117 ppm /℃ in minimum), whereas the average resistance value of the proposed resistor is 0 ppm/℃ (10 ppm/℃ in maximum and -10 ppm/℃ in minimum).
    Key words: sensing resistor, parallel circuit, temperature coefficient of resistance
    INTRODUCTION
    Temperature Coefficient Resistance, TCR, is an important detection norm for a Current Sense Resistor. By the test method: MIL-STD-202 method 304, we measure the variation of the Current Sense Resistor from 25℃ and 125℃. The variation must be in ±1% of the resistance specification or ±100 ppm/℃in variation rate.
    A New Current Sense Resistor was designed using a parallel circuit in which a loop circuit was formed, and the two sets of voltage-sensing electrode and current electrode were separated. Thus, measuring difference in voltage required only a very small part of the current and would not cause varied rate of measured value or out-of-specification.
    MATERIALS AND METHODS
    Manganin is a Copper Alloy commonly used for resistance material. The elements of Manganin are Cu:86%;Mn:12%;Ni:2%,the Resistance is 4.3 μΩ.mm and the TCR is ±10 ppm/℃. Using ANSYS to simulation the resistance variation rate from conventional Current Sense Resistor to new one. Using its engineer specification and manufacturing method of new current sense resistor, we manufacture it within a 3mΩ resistance. Another important thing is to define probes relative position to make sure the measure systems be all the same including outline measure system, Laser measure system and packing measure system.
    RESULTS AND DISCUSSION
    When the temperature is within 25℃ and 125℃, the average resistance value of conventional 3 mΩ sensing resistor is 134 ppm/℃ (148 ppm/℃ in maximum and 117 ppm /℃ in minimum), whereas the average resistance value of the proposed resistor is 0 ppm/℃ (10 ppm/℃ in maximum and -10 ppm/℃ in minimum).
    According to the structure of conventional Current Sense Resistor, these dimensions of Copper electrode contribute a large TCR to its resistance. With the same target of 3 mΩ, if the thickness of the foil is larger, the dimension of Copper electrode is smaller, then we will get a lower measured value varied rate . Therefore, well-designed of the dimensions of the Copper electrode is a key project.
    CONCLUSION
    It is successfully to use parallel circuit design and 50 μm thickness Manganin foil to manufacture a New Current Sense Resistor. By the measure method presents in the thesis, the measured value varied rate of New Current Sense Resistor is ±10 ppm/℃ in experiment results.

    摘要...................Ⅰ Abstract.................Ⅱ 誌謝...................V 目錄...................VI 表目錄................IX 圖目錄.................X 第一章 緒論................1 1-1 緒論................1 第二章 設計原理簡介..............11 2-1 歐姆定律...............11 2-2 電阻定律與電阻率 ...........12 2-3 電阻值溫度係數.............13 2-4 低電阻值之電阻的量測方法..........15 2-5 銅錳合金材料特性...........19 2-6 模型設計..............20 2-7 ANSYS模擬實驗設計............24 2-7-1 設定材料性質參數...........24 2-7-2 模型製圖...............25 2-7-3 模型分析...............26 2-7-3-1 Geometry.............26 2-7-3-2 Mesh...............27 2-7-3-3 設定穩態條件............28 2-7-3-4 Solution.............30 2-8 製造流程規劃.............31 2-8-1 製造流程...............31 2-8-2 準備材料與治具.............34 第三章 儀器設備與實驗方法............35 3-1 設備簡介...............35 3-1-1 曝光機...............35 3-1-2 垂直式連續電鍍設備............36 3-1-3 綠光鐳射修值機............36 3-1-4 環境溫度測試機............37 3-1-5 微歐姆計...............38 3-2 實驗方法...............39 3-2-1 定義量測方法.............39 3-2-2 鐳射修值之中心預留值方法..........40 第四章 模擬與實驗結果.............41 4-1 新型電流感測電阻器之電阻值量測值變化率的模擬結果...41 4-2 一般型電流感測電阻器之電阻值量測值變化率的模擬結果.43 4-3 線外量測系統與焊板量測系統差異比較......44 4-4 新型電流感測電阻器之電阻值量測值變化率的實驗結果...48 4-5 一般型電流感測電阻器之電阻值量測值變化率的實驗結果.49 第五章 結論與建議...............51 5-1 結論................51 5-2 建議................52 參考文獻..................54

    [1] Department of Defence U.S.A., Test Method Standard Method 304 Resistance-Temperature Characteristic, 2015.
    [2] S.-W. Chen, C.-M. Chen, and W.-C. Liu, Electric Current Effects Upon the SnCu and SnNi Interfacial Reactions, Journal of Electronic Materials, Vol. 27, No. 11, 1998.
    [3] C.-M. Chen, S.-W. Chen, Electromigration Effect Upon The SnAg and SnNi Interfacial, Acta Materialia, Vol. 50, 2461–2469, 2002.
    [4] 陳木元,表面黏合金屬箔晶片電阻器之製造方法,I313875,2009。
    [5] 吳慎智、葉嘉雯、陳致龍,晶片電阻器之製造方法,I437582,2010。
    [6] 簡高柏、吳文豐、吳文正、洪宗塔,晶片電阻器及其製造方法,I351040,2011。
    [7] http://www-history.mcs.st-andrews.ac.uk/Biographies/Ohm.html, Georg Simon Ohm, 2000.
    [8] G. S. Ohm, Die Galvanische Kette, Mathematisch Bearbeitet, Bei T.H.Riemann, 1827.
    [9] A. Russell, Lord Kelvin His Life and Work, Dodge Poblishing Company, 1912.
    [10] R. Malarić, Instrumentation And Measurement In Electrical Engineering, 2011.
    [11] T. R. Kuphaldt, Lessons In Electric Circuits, Volume I – DC , fifth edition, Design Science License, 2006.
    [12] https://en.wikipedia.org/wiki/Kelvin_bridge, Kelvin Bridge, 2016.
    [13] R. Malarić, Instrumentation and Measurement In Electrical Engineering, Brown Walker Press, 2011.
    [14] F. Dale, R. Patrick, W. Stephen, Understanding DC Circuits, Butterworth-Heinemann, 1999.
    [15] 蔡東謀、蕭勝利、張世欣、陳致龍、李煥文,弓形分流器,M516215,2016。
    [16] 駱達文,電阻器製造方法,I447747,2014。
    [17] Y. Masaki, Chip Resistor And Method For Manufacturing The Same, I324350, 2012.
    [18] 李輝煌,Finite Element Simulations With ANSYS Workbench 15,全華圖書股份有限公司,2014。
    [19] B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, A. Semerok, Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion, Applied Physics A, Vol. 69, 381-383, 1999.
    [20] B.N. Chichkov, C. Momma , S. Nolte, Femtosecond, picosecond and nanosecond laser ablation of solids, Applied Physics A, Vol. 63, 134-142, 1996.
    [21] M. Paunovic, M. Schlesinger, Fundamentals Of Electrochemical Deposition, A John Wiley & Sons, INC., 2006.
    [22] E. M. El-Giar, R. A. Said, G. E. Bridges and D. J. Thomson, Localized Electrochemical Deposition of Copper Microstructures. Journal of The Electrochemical Society, Vol. 147, 586-591, 2000.
    [23] Allardyce Georger, Hamm Gary, Karaya Narsmoul, Low Interal Stress Copper Electroplating Method, 2014.
    [24] J.J. Van Den Broek, J.J.T.M. Donkers, R.A.F. Van Der Rijt and J.T.M. Janssen, Metal Film Precision Resistors: Resistive Metal Films and A New Resistor Concept, Philips J. Res., Vol. 51, 429-447, 1998.
    [25] S. K. Archer, Trimming of Nickel-Chormium Film Resistors. Thin Solid Films, Vol. 4, 413-422, 1969.
    [26] M. Wron´ski, S. Kamin´ski, E. Mis´, A. Dziedzic, New Trim Configurations for Laser Trimmed Thick-Film Resistors, Microelectronics Reliability, Vol. 45, 1941-1948, 2005.
    [27] 孫弘道、王希俊、吳文和,印刷網版製作微透鏡陣列之最佳化研究, 印刷科技,第27期,第2卷,p48-p66,2011。

    下載圖示 校內:2017-09-07公開
    校外:2017-09-07公開
    QR CODE