簡易檢索 / 詳目顯示

研究生: 王儒揚
Wang, Ru-Uang
論文名稱: 熱擴散Co於濺鍍Zn1-xCoxO 薄膜內之可見光誘發光觸媒作用
Visible light induced photo-catalytic effect on thermally-diffused Co into a sputtered Zn1-xCoxO thin film
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 66
中文關鍵詞: 熱擴散光觸媒薄膜鈷元素氧空缺直流磁控濺鍍
外文關鍵詞: photocatalytic thin film, cobalt concentration., oxygen vacancy, magnetron sputter deposition, thermal diffusion
相關次數: 點閱:70下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用直流磁控濺鍍方式,於室溫下沉積Zn1-xCoxO之光觸媒薄膜,並將沉積後的薄膜進行熱擴散處理,改質薄膜之能隙。薄膜之物性研究方面,由低掠角X光繞射儀與掃描式電子顯微鏡分析,探討薄膜於不同製程條件之微結構與表面形貌,並利用X光光電子能譜儀分析薄膜表面之化學組態。在光學分析方面,則是利用紫外光-可見光分光儀量測光觸媒薄膜之能隙。
    由實驗結果顯示,在濺鍍過程中,可添加不同含量的氧氣氛,以填補氧空缺,改變氧空缺含量,使缺陷量達到一理想值(IVo/IO=0.13),使其在有最佳之光觸媒效能。經由900℃熱擴散製程的光觸媒薄膜,其能隙不只下降至可見光範圍2.97 eV,整體光觸媒降解亞甲基藍效率也可提升為未經熱處理顯著3倍。造成能隙改質之原因是結合薄膜內晶粒由9.79 nm成長至24.79 nm及鈷元素含量由0.67 %增加至1.40%,使鈷的d軌域與ZnO的sp軌域進行混成,縮減能隙,同時藉此抑制電子電洞對再結合,提升光觸媒效能。而在抗菌測試中,經由熱擴散處理的光觸媒,也具有清楚的抑菌圈,可說明經由熱擴散處理的光觸媒於可見光下具有分解有機污染物及殺菌之功效。合上述之實驗,在濺鍍功率為80 W,濺鍍氣氛含30 % O2,熱擴散處理溫度900℃,薄膜之結晶度不僅僅有所成長,鈷含量也增加為未經熱處理薄膜2倍,而且光觸媒內的氧空缺最為適量,故在可見光條件下,擁有最顯著光觸媒效能。
    在本實驗的製程,熱擴散的處理可明顯的在可見光照射下提升光觸媒對有機物質的降解能力與抗菌能力,以應用於室內潔淨,提升室內生活品質。

    In this study, we deposited Zn1-xCoxO photocatalyst thin film under room temperature by magnetron DC sputtering deposition and post thermal diffusion process to modify its band gap. To characterize its physical properties, we utilized XRD and SEM to analyze the microstructure and morphology of the thin film. And we also utilized XPS to discuss surface chemical composition. To determine its optical property, we utilized UV/vis spectrometer to calculate the band gap of thin film.
    Our research indicates that adding different oxygen ratio during sputtering process can supply oxygen vacancies to find out the optimal impurity content for the best photocatalytic effect. Photocatalyst thin film under 900℃ thermal diffusion process can only narrow its band gap to 2.97 eV which lies in visible light range but also enhance photocatalytic effect measured by methylene blue degradation. The reasons to modify the band gap are grain growth from 9.79 nm to 24.79 nm and cobalt atomic concentration increasement 0.67 % to 1.40 % to force the hybrid with d orbital of transition metal element and sp orbital of ZnO, meanwhile, inhibit electron-hole pair recombination to improve photocatalytic effect. As the results of anti-bacterial test, photocatalyst under post-thermal diffusion process revealed inhibition zone clearly which indicate that thin film through thermal diffusion can degrade organic pollutants and sterilize under visible light. Summarize the data we tested, while sputter power is 80 W, oxygen ratio keeps 30 % during sputter and diffusion temperature controls 900℃, the crystallinity will improve and cobalt concentration will be twice as much as unheated film, furthermore, the oxygen vacancy content is most optimal. Therefore, it possessed most predominant photocatalytic effect.
    From our experiment, thermal diffusion process can improve photocatalytic organic degradation and anti-bacterial capability under visible light exposure. Therefore, it can apply for indoor cleaning to promote a high living quality.

    第一章 序論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 2 1.3.1 光觸媒反應與特性 2 1.3.2 光觸媒效能改質 4 1.3.3 可見光光觸媒改質 5 1.3.4文獻整理 6 1.4 研究目的 6 第二章 理論基礎 8 2.1 光觸媒簡介 8 2.1.1 氧化鋅光觸媒 9 2.2 濺鍍理論 11 2.2.1 濺鍍原理 11 2.2.2 磁控濺鍍系統 13 2.2.3 薄膜沉積原理 15 2.2.4 薄膜表面及截面型態結構 17 2.3 反應動力模式 18 第三章 材料與方法 20 3.1實驗設計與流程 20 3.2 實驗材料 21 3.3 基板清洗 22 3.4 直流磁控濺鍍設備與參數 22 3.4.1 表面粗度儀(Alpha Step) 24 3.4.2 低掠角X光繞射儀(Grazing incident X-ray diffraction, GIXRD) 25 3.5 熱擴散處理 25 3.5.1 UV/vis 吸收光譜儀(UV/visible spectroscopy, UV/vis) 26 3.5.2 掃描式電子顯微鏡(SEM) 27 3.5.3 X光電子能譜儀(XPS) 27 3.6 亞甲基藍降解測試 28 3.7 抗菌測試 29 第四章 結果與討論 30 4.1 直流射頻功率之影響 30 4.1.1膜厚分析 30 4.1.2結晶結構分析 31 4.1.3 光學分析 32 4.1.4表面形貌觀察 34 4.1.5成分含量分析 34 4.2 氧含量與擴散溫度之影響 36 4.2.1 膜厚分析 37 4.2.2 光學分析 37 4.2.3 結晶結構分析 42 4.2.4 表面形貌觀察 45 4.2.5 成分含量分析 47 4.3 功能性量測 49 4.3.1 亞甲基藍降解 49 4.3.2 表面化學組態分析 54 4.3.3 抗菌測試 57 第五章 結論 59 參考文獻 60

    〔1〕「環境工程概論」,中華民國環境工程學會,63-65,2002。
    〔2〕http://www.uvi.edu/SandM/Physics/SCI100/Downloads/SCI100Meteorology Lectures/SCI100MeteorContents.html
    〔3〕M.D. Driessen, T.M. Miller, and V.H. Grassian, “Photocatalytic oxidation of trichloroethylene on zinc oxide:characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy”, Journa of Molecular Catalysis A: Chemical, Vol. 131, 149-156, 1998.
    〔4〕R.D Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, “Photoinduced surface wettability conversion of ZnO and TiO2 thin films”, Journal of Physical. Chemistry B, Vol. 105, 1984-1990, 2001.
    〔5〕N. Daneshvar, D. Salari, and A.R. Khataee ,“Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, 317-322, 2004.
    〔6〕V. Rico, C. Lo pez, A. Borras, J. P. Espinos, and A.R. Gonza, “Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO2”, Solar Energy Materials & Solar Cells, Vol. 90, 2944-2949, 2006.
    〔7〕L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, and J. Sun,“Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity ”, Solar Energy Materials & Solar Cells, Vol. 90, 1773-1787, 2006.
    〔8〕Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, and Y. Zhu, “Luminescence and photocatalytic activity of ZnO nanocrystals: correlationbetween structure and property”, Inorganic Chemistry, Vol. 46, 6675-6682, 2007.
    〔9〕Comparelli, E. Fanizza, M. L. Curri, P. D. Cozzoli, G. Mascolo, and A. Agostiano, “UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates”, Applied Catalysis B: Environmental, Vol. 60, 1-11, 2005.
    〔10〕M. Zhang, J. Yang, S. Dai, P. He, and Z. Zhang, “Effect of Au deposition on photocatalytic activity of ZnO nanoparticles for CO oxidation”, Surface Review and Letters, Vol. 12, 749-752, 2005.
    〔11〕F. Peng, S. Chen, H. Wang, and L. Huang, “Photocatalytic behavior of TiO2 and ZnO prepared with different methods under ultraviolet and visible light irradiation”, Journal of Chemical Industry and Engineering, Vol. 56, 879-882, 2005.
    〔12〕Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, and Kemei Wei, “Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis”, Inorganic Chemistry, Vol. 46, 6680-6686, 2007.
    〔13〕M. Futsuhara, K. Yoshioka, and O. Takai, “Optical properties of zinc oxynitride thin films”, Thin Solid Films, Vol. 317, 322-325, 1998.
    〔14〕D. Li, and H. Haneda, “Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 155, 171-178, 2003.
    〔15〕C. Kim, S. J. Doh, S. G. Lee, S. J. Lee, and H. Y. Kim, “Visible-light absorptivity of a zincoxysulfide (ZnOxS1-x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation”, Applied Catalysis A: General, Vol. 330, 127-133, 2007.
    〔16〕S. Ekambaram, Y. Iikubo, and A. Kudo, “Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO”, Journal of Alloys and Compounds, Vol. 433, 237-240, 2007.
    〔17〕A. Kudo, R. Niishiro, A. Iwase, and H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts”, Chemical Physics, Vol. 339, 104-110, 2007.
    〔18〕S. Sakthivela, B. Neppolian, M.V. Shankar, B. Arabindoob, M Palanichamy, and V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2”, Solar Energy Materials & Solar Cells, Vol. 77, 65-82, 2003.
    〔19〕M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, “Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films”, Chemistry of Material, Vol.14, 2812-2816, 2002.
    〔20〕H. C. Yatmaz, A. Akyol, and M. Bayramoglu, “Kinetics of the photocatalytic decolorization of an Azo reactive dye in aqueous ZnO suspensions”, Industrial & engineering chemistry research, Vol. 43, 6035-6039, 2004.
    〔21〕G. Carlos, A. K. Wypych, G.. M. Sandra, D. Nelson, and P. Z. Patricio,“Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent
    by Ag-doped ZnO”, Chemosphere, Vol. 40, 427-432, 2000.
    〔22〕J. R. Roth, “Industrial plasma engineering-Volume1:Principles Institute of Physics”, Publishing in London, 1995.
    〔23〕B. Chapman, “Glow Discharge Process”, John Wiley and Sons, New York, 1980.
    〔24〕J. R. Roth, “Industrial plasma engineering-Volume1:Principles Institute of Physics”, Publishing in London, 1995.
    〔25〕J. Venables, “Nucleation and growth of thin films”, Reports on Progress in Physics, vol. 47, 399-459, 1984.
    〔26〕J.A.Thornton, “Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coating”, Journal of Vacuum Science Technolgy, Vol. 11, 666-670, 1974.
    〔27〕J.A.Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings”, Journal of Vacuum Science Technolgy, Vol. 12, 830-835, 1975.
    〔28〕J.A.Thornton, “Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coating”, Journal of Vacuum Science Technolgy, Vol. 11, 666-670, 1974.
    〔29〕J.A.Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings”, Journal of Vacuum Science Technolgy, Vol. 12, 830-835, 1975.
    〔30〕Z. Zhang, and C.C. Wang, “Role of particle size in nanocrystalline TiO2-based photocatalysts”, Journal of Physical Chemistry B, Vol. 102, 10871-10878, 1998.
    〔31〕M. A. Fox, and M. T. Dulay, “Heterogeneous photocatalysis”, Chemical Reviews, Vol. 93, 341-357, 1993.
    〔32〕J. M. Hermann, “Heterogeneous photocatalysis: fundamentals and applications to removal of various types of aqueous pollutants”, Catalysis Today, Vol. 53, 115-128,1999.
    〔33〕陳富亮,「最新奈米光觸媒應用技術,」,普林斯頓國際有限公司,24-30,2003。
    〔34〕張晶、楊健 譯,「光觸媒圖解」,商周出版,52-57,2003。
    〔35〕H. Xu, X. F. Qin, F. X. Jiang, X. L. Li, Y. Chen, and G. A. Gehring, “The dopant concentration and annealing temperature dependence of ferromagnetism in Co-doped ZnO thin films”, Applied Surface Science, Vol. 254, 4956-4960, 2008.
    〔36〕X. C. Liua, E. W. Shia, Z. Z. Chena, H. W. Wei, L. X. Songa, H. Wang, and S.D Yaoc, “Structural, optical and magnetic properties of Co-doped ZnO films”, Journal of Crystal Growth, Vol. 296, 135-140, 2006.
    〔37〕Y. E. Lee, J. B. Lee, and H. J. Kim, "Microstructural evolution and preferred orientation change of radio-frequency-magnetron sputtered ZnO thin films”, Journal of Vacuum Science Technology, A, Vol. 14, 1943-1948 ,1996.
    〔38〕Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, and B. K. Tay, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air”, Journal of Applied Physics, Vol. 94, 354-358, 2003.
    〔39〕P. Singh, A. K. Chawla, D. Kaur, and R. Chandra, “Effect of oxygen partial pressure on the structural and optical properties of sputter deposited ZnO nanocrystalline thin films”, Materials Letters, Vol. 61, 2050-2053, 2007.
    〔40〕M. Peiteado, D. Makovec, M. Villegas, and A.C. Caballero, “Influence of crystal structure on the CoII diffusion behavior in the Zn1-xCoxO system”, Journal of Solid State Chemistry, Vol. 181, 2456-2461, 2008.
    〔41〕C. Kittel, “Introduction to Solid State Physics 7th edition”,1995.
    〔42〕H. Li, Y. Zhang, X. Pan, T. Wang, and E. Xie, “The effects of thermal annealing on properties of MgxZn1−xO films by sputtering”, Journal of Alloys and Compounds, Vol. 472, 208-210, 2009
    〔43〕Z.B. Fang, Z.J. Yan, Y.S. Tan, X.Q. Liu, and Y.Y. Wang, “Influence of post-annealing treatment on the structure properties of ZnO films”, Applied Surface Science, Vol. 241, 303-308, 2005
    〔44〕F. Winters, and P. Sigmund, “Sputtering of chemisorbed gas nitrogen tungsten by low-energy ions”, Journal of Applied Physics, Vol. 45, 4760-4766, 1974.
    〔45〕L. He, and M. C. Chiu, “Effect of oxygen on the electrochromism of RF reactive magnetron sputter deposited tungsten oxide”, Surface and Coatings Technology, Vol. 127, 43-51, 2000.
    〔46〕T. L. Phan, R. Vincent, D. Cherns, N. H. Dan and S. C. Yu,” Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods”, Applied Physics Letters, Vol. 93, 082110-082112, 2008.
    〔47〕B. Tryba, M. Toyoda, A. W. Morawski, R. Nonaka, and M. Inagaki,"Photocatalytic activity and OH radical formation on TiO2 in the relation to crystallinity”, Applied Catalysis B: Environmental, Vol. 71, 163-168, 2007.
    〔48〕R. Ullah, and J. Dutta, “Photocatalytic activities of ZnO nanoparticles synthesized by wet chemical techniques”, Emerging Technologies, Vol. 13, 353-357, 2006.
    〔49〕X. Qiu, G. Li, X. Sun, L. Li, and X. Fu, “Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties”, Nanotechnology, Vol. 19, 215703-215810, 2008.
    〔50〕H. J. Lee, S. Y. Jeong, C. R. Cho, and C. H. Park, “Study of diluted magnetic semiconductor: Co-doped ZnO”, Applied Physics Letters, Vol. 81, 4020-4022, 2002.
    〔51〕C. H. Choi, and S. H. Kim, “Characterizations of ferromagnetic Zn1−xCoxO thin films grown on Al2O3 (0001) by reactive radio-frequency magnetron sputtering coupled with post-growth annealing”, Thin Solid Films, Vol. 515, 2864-2871, 2007.
    〔52〕M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Applied Surface Science, Vol. 158, 134-140, 2000.
    〔53〕K. J. Shieh, M. Li, Y. J. Lee, S. D. Sheu, Y. T. Liu, and Y. C. Wang, “Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light”, Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 2, 121-126, 2006.

    下載圖示 校內:2012-07-23公開
    校外:2012-07-23公開
    QR CODE