| 研究生: |
邱意珊 Chiu, I-Shan |
|---|---|
| 論文名稱: |
探討高血脂相關的發炎現象在大腸直腸癌轉移中所扮演的角色 Evaluating the Role of Hyperlipidemia-associated Inflammation in Colorectal Cancer Metastasis |
| 指導教授: |
陳炳焜
Chen, Ben-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 大腸直腸癌 、癌症轉移 、高血脂 、肥胖 、發炎 、薑黃素 、阿斯匹靈 、白血球介素-8 |
| 外文關鍵詞: | colorectal cancer, metastasis, hyperlipidemia, obesity, inflammation, curcumin, aspirin, Interleukin-8 |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腸直腸癌是全球癌症排名第三,不論發生率、死亡率都相當高,一旦病人初診即為轉移型大腸癌,五年存活率僅剩12%,是目前臨床上相當棘手的問題。許多研究發現,發炎或是代謝疾病例如肥胖都會導致癌症的進程,又肥胖所致的高血脂病症常常伴隨著慢性發炎,因此有關高血脂相關性的發炎對於大腸癌轉移的影響是本篇的研究方向。首先,利用人體脂肪細胞中含量最豐富的油酸(Oleic acid, OA)作為高血脂的模式,藉由將癌細胞打入小鼠尾靜脈,使癌細胞於血流中循環,並且觀察肺部組織癌細胞外滲現象(extravasation),結果顯示有加入OA處理的組別相較一般組別細胞還要多,然而有預先處理Aspirin或是Curcumin的組別,可以有效抑制OA所造成的細胞extravasation,同樣的結果也可以在由DSS所引發的發炎模式以及由高脂飼料所引發的肥胖鼠模式看到,說明高血脂以及發炎對於癌細胞extravasation具有相關性。此外,在體外細胞實驗中,有處理OA的組別,細胞爬行能力、侵入能力、抗失巢凋亡能力有明顯上升,以及上皮與間質細胞間轉換、基質金屬蛋白酶的標記也皆有增加,顯示出OA會促使細胞的轉移能力增強。同時,有處理OA的組別,發炎相關的基因像是COX-2, IL-8, IL-6, ANGPTL4等,皆可以被OA所誘導上升。此外,外加IL-8也可看到OA下游所調控的基因上升以及相關轉移性功能試驗的增強;另一方面,若是預先knockdown IL-8的表現,可以抑制原先OA所誘導的基因上升、細胞爬行與侵入實驗。總結來說,由上述實驗結果可以得知,高血脂相關性的發炎可以促進大腸直腸癌細胞轉移。
Colorectal cancer (CRC) is a leading common cancer around the world. The overall survival rate worsens with increasing clinical stage with only 12% of patients with metastatic cancer being alive at 5 years. Many researches show CRC progression is linked with inflammation and metabolic diseases including obesity. In order to identify whether metabolic disorder such as hyperlipidemia enhances tumor cell metastasis, we conducted tail vein injection of CRC cells in mice and found that more oleic acid (OA)-treated cells in frozen sections of lung tissues were observed than those untreated cells. However, pre-treating aspirin or curcumin inhibited extravasation of tumor cells, which consistent in DSS-induced inflammation model, suggesting inflammation might play a crucial role in hyperlipidemia-induced cancer metastasis. In addition, the mRNA expression of inflammatory cytokines such as IL-6, IL-8 and cyloxygenase-2 (COX-2) were also induced in OA-treated cells. Our previous results showed that angiopoietin-like 4 (ANGPTL4), a lipid metabolic protein, regulates metastasis and is the downstream of COX-2 in head and neck cancer. Here, we found the increased expression of ANGPTL4 and epithelial-mesenchymal transition (EMT) / matrix metalloproteinases (MMPs) markers that were associated with hyperlipidemia-induced cancer metastasis. The ability of CRC cell migration and invasion was promoted by OA treatment. Moreover, the increased expression level in IL-8 was found in OA-treated CRC cells by protein array. Knockdown IL-8 inhibited OA-induced cell metastasis behavior and mRNA expression of EMT / MMPs marker, which was reversed by adding IL-8 recombinant protein. In summary, these results indicate that hyperlipidemia-associated inflammation enhanced CRC metastasis.
1. Thanikachalam K, Khan G. Colorectal Cancer and Nutrition. Nutrients. 2019;11(1).
2. Ray AL, Berggren KL, Restrepo Cruz S, Gan GN, Beswick EJ. Inhibition of MK2 suppresses IL-1beta, IL-6, and TNF-alpha-dependent colorectal cancer growth. Int J Cancer. 2018;142(8):1702-1711.
3. Brenner H, Kloor M, Pox CP. Colorectal cancer. The Lancet. 2014;383(9927):1490-1502.
4. Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24(6):1207-1222.
5. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for Cancer Detection and Familial Predisposition: Development of International Criteria for the Determination of Microsatellite Instability in Colorectal Cancer. Cancer Research. 1998;58(22):5248-5257.
6. Haydon AMM, Jass JR. Emerging pathways in colorectal-cancer development. The Lancet Oncology. 2002;3(2):83-88.
7. Huang D, Sun W, Zhou Y, et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37(1):173-187.
8. Fodde R, Smits R, Clevers H. APC, Signal transduction and genetic instability in colorectal cancer. Nature Reviews Cancer. 2001;1:55.
9. Vaughn CP, ZoBell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes, Chromosomes and Cancer. 2011;50(5):307-312.
10. Smith G, Carey FA, Beattie J, et al. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proceedings of the National Academy of Sciences. 2002;99(14):9433-9438.
11. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Reviews Cancer. 2003;3(6):453-458.
12. Harris AL. Hypoxia — a key regulatory factor in tumour growth. Nature Reviews Cancer. 2002;2(1):38-47.
13. Semenza GL. Targeting HIF-1 for cancer therapy. Nature Reviews Cancer. 2003;3(10):721-732.
14. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer. 2004;4(2):118-132.
15. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous Expression of N-Cadherin in Breast Cancer Cells Induces Cell Migration, Invasion, and Metastasis. The Journal of Cell Biology. 2000;148(4):779-790.
16. Hotz B, Arndt M, Dullat S, Bhargava S, Buhr H-J, Hotz HG. Epithelial to Mesenchymal Transition: Expression of the Regulators Snail, Slug, and Twist in Pancreatic Cancer. Clinical Cancer Research. 2007;13(16):4769-4776.
17. Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the Transcription Factors Snail, Slug, and Twist and Their Clinical Significance in Human Breast Cancer. Annals of Surgical Oncology. 2005;12(6):488-496.
18. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429-1437.
19. Kim M, Gans JD, Nogueira C, et al. Comparative Oncogenomics Identifies NEDD9 as a Melanoma Metastasis Gene. Cell. 2006;125(7):1269-1281.
20. Matsuzaki K, Seki T, Okazaki K. TGF-β during human colorectal carcinogenesis: the shift from epithelial to mesenchymal signaling. InflammoPharmacology. 2006;14(5):198-203.
21. Rokavec M, Öner MG, Li H, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. Journal of Clinical Investigation. 2014;124(4):1853-1867.
22. Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clinical & Experimental Metastasis. 2008;25(6):657-663.
23. Wang Y, Ngo VN, Marani M, et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 2010;29(33):4658-4670.
24. Mazón Peláez I, Kalogeropoulou M, Ferraro A, et al. Oncogenic RAS alters the global and gene-specific histone modification pattern during epithelial–mesenchymal transition in colorectal carcinoma cells. The International Journal of Biochemistry & Cell Biology. 2010;42(6):911-920.
25. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer. 2002;2(3):161-174.
26. Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nature. 2001;411(6835):375-379.
27. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS Journal. 2011;278(1):16-27.
28. Mori M, Barnard GF, Mimori K, Ueo H, Akiyoshi T, Sugimachi K. Overexpression of matrix metalloproteinase-7 mRNA in human colon carcinomas. Cancer. 1995;75(S6):1516-1519.
29. YAMADA T, OSHIMA T, YOSHIHARA K, et al. Overexpression of MMP-13 Gene in Colorectal Cancer with Liver Metastasis. Anticancer Research. 2010;30(7):2693-2699.
30. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T. β-Catenin Regulates the Expression of the Matrix Metalloproteinase-7 in Human Colorectal Cancer. The American Journal of Pathology. 1999;155(4):1033-1038.
31. Yang W, Arii S, Gorrin-Rivas MJ, Mori A, Onodera H, Imamura M. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer. 2001;91(7):1277-1283.
32. Coussens LM, Fingleton B, Matrisian LM. Matrix Metalloproteinase Inhibitors and Cancer—Trials and Tribulations. Science. 2002;295(5564):2387-2392.
33. Hanahan D, and Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell. 1996;86:353-364.
34. Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature. 2005;438(7070):946-953.
35. Yang J, Mani SA, Donaher JL, et al. Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell. 2004;117(7):927-939.
36. Weiswald L-B, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia (New York, NY). 2015;17(1):1-15.
37. Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. The Lancet Oncology. 2002;3(7):425-430.
38. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437(7058):497-504.
39. Criscuoli ML, Nguyen M, Eliceiri BP. Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood. 2005;105(4):1508-1514.
40. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. New England Journal of Medicine. 2004;350(23):2335-2342.
41. Sandler A, Gray R, Perry MC, et al. Paclitaxel–Carboplatin Alone or with Bevacizumab for Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2006;355(24):2542-2550.
42. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073-1081.
43. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436-444.
44. Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and Colon Cancer. Gastroenterology. 2010;138(6):2101-2114.e2105.
45. Homey B, Müller A, Zlotnik A. Chemokines: agents for the immunotherapy of cancer? Nature Reviews Immunology. 2002;2(3):175-184.
46. Hirano T. Chromosome Cohesion, Condensation, and Separation. Annual Review of Biochemistry. 2000;69(1):115-144.
47. Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. The Journal of rheumatology Supplement. 1997;49:15-19.
48. Dubois RN, Abramson SB, Crofford L, et al. Cyclooxygenase in biology and disease. The FASEB Journal. 1998;12(12):1063-1073.
49. Legler DF, Bruckner M, Uetz-von Allmen E, Krause P. Prostaglandin E2 at new glance: Novel insights in functional diversity offer therapeutic chances. The International Journal of Biochemistry & Cell Biology. 2010;42(2):198-201.
50. Funk CD. Prostaglandins and Leukotrienes: Advances in Eicosanoid Biology. Science. 2001;294(5548):1871-1875.
51. McCoy JM, Wicks JR, Audoly LP. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. The Journal of Clinical Investigation. 2002;110(5):651-658.
52. Greenhough A, Smartt HJM, Moore AE, et al. The COX-2/PGE 2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377-386.
53. Mohammed A, Yarla NS, Madka V, Rao CV. Clinically Relevant Anti-Inflammatory Agents for Chemoprevention of Colorectal Cancer: New Perspectives. Int J Mol Sci. 2018;19(8).
54. Zamarron BF, Chen W. Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression. International Journal of Biological Sciences. 2011;7(5):651-658.
55. Moore RJ, Owens DM, Stamp G, et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Medicine. 1999;5(7):828-831.
56. Szlosarek P, Charles KA, Balkwill FR. Tumour necrosis factor-α as a tumour promoter. European Journal of Cancer. 2006;42(6):745-750.
57. Heikkilä K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. European Journal of Cancer. 2008;44(7):937-945.
58. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. European Journal of Cancer. 2005;41(16):2502-2512.
59. Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol. 2014;44(4):1032-1040.
60. Waldner MJ, Foersch S, Neurath MF. Interleukin-6 - A Key Regulator of Colorectal Cancer Development. International Journal of Biological Sciences. 2012;8(9):1248-1253.
61. Mantovani A, Muzio M, Garlanda C, Sozzani S, Allavena P. Macrophage control of inflammation: negative pathways of regulation of inflammatory cytokines. Novartis Foundation symposium. 2001;234:120-131; discussion 131-125.
62. Rossi D, Zlotnik A. The Biology of Chemokines and their Receptors. Annual Review of Immunology. 2000;18(1):217-242.
63. Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. Journal of periodontology. 1993;64(5 Suppl):456-460.
64. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. The Journal of clinical investigation. 1989;84(4):1045-1049.
65. Xie K. Interleukin-8 and human cancer biology. Cytokine & Growth Factor Reviews. 2001;12(4):375-391.
66. Takamori H, Oades ZG, Hoch RC, Burger M, Schraufstatter IU. Autocrine Growth Effect of IL-8 and GROα on a Human Pancreatic Cancer Cell Line, Capan-1. Pancreas. 2000;21(1):52-56.
67. Brew R, Erikson JS, West DC, Kinsella AR, Slavin J, Christmas SE. INTERLEUKIN-8 AS AN AUTOCRINE GROWTH FACTOR FOR HUMAN COLON CARCINOMA CELLS IN VITRO. Cytokine. 2000;12(1):78-85.
68. Kamohara H, Takahashi, M., Ishiko, T., Ogawa, M., & Baba, H. Induction of interleukin-8 (CXCL-8) by tumor necrosis factor-α and leukemia inhibitory factor in pancreatic carcinoma cells Impact of CXCL-8 as an autocrine growth factor. International Journal of Oncology. 2007;31(3):627-632.
69. Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology. 2005;7(2):122-133.
70. Petreaca ML, Yao M, Liu Y, DeFea K, Martins-Green M. Transactivation of Vascular Endothelial Growth Factor Receptor-2 by Interleukin-8 (IL-8/CXCL8) Is Required for IL-8/CXCL8-induced Endothelial Permeability. Molecular Biology of the Cell. 2007;18(12):5014-5023.
71. Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. The Journal of Immunology. 2003;170(6):3369-3376.
72. Long X, Ye Y, Zhang L, et al. IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol. 2016;48(1):5-12.
73. Liu Q, Li A, Tian Y, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine & Growth Factor Reviews. 2016;31:61-71.
74. Seaton A, Scullin P, Maxwell PJ, et al. Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis. 2008;29(6):1148-1156.
75. Wang D, Richmond A. Nuclear Factor-κB Activation by the CXC Chemokine Melanoma Growth-stimulatory Activity/Growth-regulated Protein Involves the MEKK1/p38 Mitogen-activated Protein Kinase Pathway. Journal of Biological Chemistry. 2001;276(5):3650-3659.
76. Burger M, Hartmann T, Burger JA, Schraufstatter I. KSHV-GPCR and CXCR2 transforming capacity and angiogenic responses are mediated through a JAK2-STAT3-dependent pathway. Oncogene. 2005;24(12):2067-2075.
77. Liu G, An L, Zhang H, Du P, Sheng Y. Activation of CXCL6/CXCR1/2 Axis Promotes the Growth and Metastasis of Osteosarcoma Cells in vitro and in vivo. Frontiers in pharmacology. 2019;10:307-307.
78. Ueda T, Shimada E, Urakawa T. Serum levels of cytokines in patients with colorectal cancer: Possible involvement of interleukin-6 and interleukin-8 in hematogenous metastasis. Journal of Gastroenterology. 1994;29(4):423-429.
79. Varkaris A, Katsiampoura A, Davis JS, et al. Circulating inflammation signature predicts overall survival and relapse-free survival in metastatic colorectal cancer. Br J Cancer. 2019;120(3):340-345.
80. Lee YS, Choi I, Ning Y, et al. Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. British Journal of Cancer. 2012;106(11):1833-1841.
81. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
82. Kuper H, Adami H-O, Trichopoulos D. Infections as a major preventable cause of human cancer. Journal of Internal Medicine. 2000;248(3):171-183.
83. Scholl SM, Pallud C, Beuvon F, et al. Anti-Colony-Stimulating Factor-1 Antibody Staining in Primary Breast Adenocarcinomas Correlates With Marked Inflammatory Cell Infiltrates and Prognosis. JNCI: Journal of the National Cancer Institute. 1994;86(2):120-126.
84. Blaser MJ, Chyou PH, Nomura A. Age at Establishment of <em>Helicobacter pylori</em> Infection and Gastric Carcinoma, Gastric Ulcer, and Duodenal Ulcer Risk. Cancer Research. 1995;55(3):562-565.
85. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436-444.
86. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and Cancer: Local and Systemic Mechanisms. Annual Review of Medicine. 2015;66(1):297-309.
87. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research. 2005;46(11):2347-2355.
88. Shapiro H, Pecht T, Shaco-Levy R, et al. Adipose Tissue Foam Cells Are Present in Human Obesity. The Journal of Clinical Endocrinology & Metabolism. 2013;98(3):1173-1181.
89. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated Fatty Acids, but Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-like Receptor 4. Journal of Biological Chemistry. 2001;276(20):16683-16689.
90. Nieman KM, Kenny HA, Penicka CV, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine. 2011;17(11):1498-1503.
91. He Q, Zhang H, Yao S, et al. A study on relationship between metabolic syndrome and colorectal cancer. Journal of BUON : official journal of the Balkan Union of Oncology. 2018;23(5):1362-1368.
92. Shen Z, Ye Y, Bin L, et al. Metabolic syndrome is an important factor for the evolution of prognosis of colorectal cancer: survival, recurrence, and liver metastasis. The American Journal of Surgery. 2010;200(1):59-63.
93. Forootan M, Tabatabaeefar M, Yahyaei M, Maghsoodi N. Metabolic syndrome and colorectal cancer: a cross-sectional survey. Asian Pacific journal of cancer prevention : APJCP. 2012;13(10):4999-5002.
94. Zhang X, Zhao X-W, Liu D-B, et al. Lipid levels in serum and cancerous tissues of colorectal cancer patients. World Journal of Gastroenterology. 2014;20(26):8646-8652.
95. Nelson ER, Wardell SE, Jasper JS, et al. 27-Hydroxycholesterol Links Hypercholesterolemia and Breast Cancer Pathophysiology. Science. 2013;342(6162):1094-1098.
96. His M, Zelek L, Deschasaux M, et al. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. European Journal of Epidemiology. 2014;29(2):119-132.
97. Day SD, Enos RT, McClellan JL, Steiner JL, Velázquez KT, Murphy EA. Linking inflammation to tumorigenesis in a mouse model of high-fat-diet-enhanced colon cancer. Cytokine. 2013;64(1):454-462.
98. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin Use and Reduced Cancer-Related Mortality. New England Journal of Medicine. 2012;367(19):1792-1802.
99. Wang C, Li P, Xuan J, et al. Cholesterol Enhances Colorectal Cancer Progression <b><i>via</i></b> ROS Elevation and MAPK Signaling Pathway Activation. Cellular Physiology and Biochemistry. 2017;42(2):729-742.
100. Karunanithi S, Levi L, DeVecchio J, et al. RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and Mediates High-Fat Diet-Induced Colon Carcinogenesis. Stem Cell Reports. 2017;9(2):438-450.
101. Erpenbeck L, Schön MP. Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood. 2010;115(17):3427-3436.
102. Haemmerle M, Taylor ML, Gutschner T, et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nature Communications. 2017;8(1):310.
103. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nature Reviews Cancer. 2011;11(2):123-134.
104. Liang W, Ferrara N. The Complex Role of Neutrophils in Tumor Angiogenesis and Metastasis. Cancer Immunology Research. 2016;4(2):83-91.
105. Shojaei F, Singh M, Thompson JD, Ferrara N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proceedings of the National Academy of Sciences. 2008;105(7):2640-2645.
106. Cools-Lartigue J, Spicer J, McDonald B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. The Journal of Clinical Investigation. 2013;123(8):3446-3458.
107. Huh JH, Kim HM, Lee ES, et al. Dual CCR2/5 Antagonist Attenuates Obesity-Induced Insulin Resistance by Regulating Macrophage Recruitment and M1/M2 Status. Obesity. 2018;26(2):378-386.
108. Ding C, Zhao Y, Shi X, et al. New insights into salvianolic acid A action: Regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats. Scientific Reports. 2016;6(1):28734.
109. Pendyala S, Neff LM, Suárez-Fariñas M, Holt PR. Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. The American Journal of Clinical Nutrition. 2010;93(2):234-242.
110. Jung SY, Ho G, Rohan T, et al. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk. Breast Cancer Research and Treatment. 2017;164(2):475-495.
111. Pereira LM, Hatanaka E, Martins EF, et al. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochemistry and Function. 2008;26(2):197-204.
112. Lamers D, Schlich R, Greulich S, Sasson S, Sell H, Eckel J. Oleic acid and adipokines synergize in inducing proliferation and inflammatory signalling in human vascular smooth muscle cells. Journal of Cellular and Molecular Medicine. 2011;15(5):1177-1188.
113. Knoch B, Barnett MPG, Zhu S, et al. Genome-Wide Analysis of Dietary Eicosapentaenoic Acid- and Oleic Acid-Induced Modulation of Colon Inflammation in Interleukin-10 Gene-Deficient Mice. Lifestyle Genomics. 2009;2(1):9-28.
114. Carrillo C, Cavia Mdel M, Alonso-Torre SR. Antitumor effect of oleic acid; mechanisms of action: a review. Nutr Hosp. 2012;27(6):1860-1865.
115. Menendez JA, Vellon L, Colomer R, Lupu R. Oleic acid, the main monounsaturated fatty acid of olive oil, suppresses Her-2/neu (erbB-2) expression and synergistically enhances the growth inhibitory effects of trastuzumab (Herceptin™) in breast cancer cells with Her-2/neu oncogene amplification. Annals of Oncology. 2005;16(3):359-371.
116. Soto-Guzman A, Navarro-Tito, N., Castro-Sanchez, L. et al. Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clin Exp Metastasis. 2010;27: 505.
117. Soto-Guzman A, Robledo T, Lopez-Perez M, Salazar EP. Oleic acid induces ERK1/2 activation and AP-1 DNA binding activity through a mechanism involving Src kinase and EGFR transactivation in breast cancer cells. Molecular and Cellular Endocrinology. 2008;294(1):81-91.
118. Li S, Zhou T, Li C, et al. High Metastaticgastric and Breast Cancer Cells Consume Oleic Acid in an AMPK Dependent Manner. PLOS ONE. 2014;9(5):e97330.
119. Vane JR, Botting RM. The mechanism of action of aspirin. Thrombosis Research. 2003;110(5):255-258.
120. Cao Y, Nishihara R, Wu K, et al. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncol. 2016;2(6):762-769.
121. Burn J, Sheth H. The role of aspirin in preventing colorectal cancer. Br Med Bull. 2016;119(1):17-24.
122. Burn J, Gerdes A-M, Macrae F, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. The Lancet. 2011;378(9809):2081-2087.
123. Rothwell PM, Wilson M, Price JF, Belch JFF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet. 2012;379(9826):1591-1601.
124. Mohandas KM, Desai DC. Epidemiology of digestive tract cancers in India. V. Large and small bowel. Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology. 1999;18(3):118-121.
125. Chan MM-Y. Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochemical Pharmacology. 1995;49(11):1551-1556.
126. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199-225.
127. Liu LD, Pang YX, Zhao XR, et al. Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch Gynecol Obstet. 2019;299(6):1627-1639.
128. Lu X, Wu F, Jiang M, Sun X, Tian G. Curcumin ameliorates gestational diabetes in mice partly through activating AMPK. Pharm Biol. 2019;57(1):250-254.
129. Aggarwal BB, Shishodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005;11(20):7490-7498.
130. Hong JH, Ahn KS, Bae E, Jeon SS, Choi HY. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis. 2006;9(2):147-152.
131. Hu C, Li M, Guo T, et al. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine. 2019;58:152740.
132. Killian PH, Kronski E, Michalik KM, et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis. 2012;33(12):2507-2519.
133. Gouda MM, Bhandary YP. Acute Lung Injury: IL-17A-Mediated Inflammatory Pathway and Its Regulation by Curcumin. Inflammation. 2019;42(4):1160-1169.
134. Jin CY, Lee JD, Park C, Choi YH, Kim GY. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacol Sin. 2007;28(10):1645-1651.
135. Guo Y, Su ZY, Zhang C, et al. Mechanisms of colitis-accelerated colon carcinogenesis and its prevention with the combination of aspirin and curcumin: Transcriptomic analysis using RNA-seq. Biochem Pharmacol. 2017;135:22-34.
136. Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci. 2005;50(11):2191-2193.
137. Li L, Ahmed B, Mehta K, Kurzrock R. Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer. Mol Cancer Ther. 2007;6(4):1276-1282.
138. Shao W, Yu Z, Chiang Y, et al. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One. 2012;7(1):e28784.
139. Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology. 2008;149(7):3549-3558.
140. Zhu P, Goh Yan Y, Chin Hwee Fang A, Kersten S, Tan Nguan S. Angiopoietin-like 4: a decade of research. Bioscience Reports. 2011;32(3):211-219.
141. Ge H, Yang G, Huang L, Motola DL, Pourbahrami T, Li C. Oligomerization and Regulated Proteolytic Processing of Angiopoietin-like Protein 4. Journal of Biological Chemistry. 2004;279(3):2038-2045.
142. Georgiadi A, Lichtenstein L, Degenhardt T, et al. Induction of cardiac angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor β/δ and protects against fatty acid-induced oxidative stress. Circulation Research. 2010;106(11):1712-1721.
143. Kersten S, Lichtenstein L, Steenbergen E, et al. Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009;29(6):969-974.
144. Goh YY, Pal M, Chong HC, et al. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. The Journal of biological chemistry. 2010;285(43):32999-33009.
145. Zhu P, Tan Ming J, Huang R-L, et al. Angiopoietin-like 4 Protein Elevates the Prosurvival Intracellular O2−:H2O2 Ratio and Confers Anoikis Resistance to Tumors. Cancer Cell. 2011;19(3):401-415.
146. Huang R-L, Teo Z, Chong HC, et al. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood. 2011;118(14):3990-4002.
147. Nakayama T, Hirakawa H, Shibata K, et al. Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep. 2011;25(4):929-935.
148. Kim S-H, Park Y-Y, Kim S-W, Lee J-S, Wang D, DuBois RN. ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression. Cancer research. 2011;71(22):7010-7020.
149. Shen C-J, Chan S-H, Lee C-T, Huang W-C, Tsai J-P, Chen B-K. Oleic acid-induced ANGPTL4 enhances head and neck squamous cell carcinoma anoikis resistance and metastasis via up-regulation of fibronectin. Cancer Letters. 2017;386:110-122.
150. Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532-536.
151. Solomon H, Dinowitz N, Pateras IS, et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene. 2018;37(12):1669-1684.
152. Yin Y, Yao S, Hu Y, et al. The Immune-microenvironment Confers Chemoresistance of Colorectal Cancer through Macrophage-Derived IL6. Clinical Cancer Research. 2017;23(23):7375-7387.
153. McGranahan N, Swanton C. Cancer Evolution Constrained by the Immune Microenvironment. Cell. 2017;170(5):825-827.
154. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology. 2017;17(9):559-572.
155. Yohei S, Masaya O, Hiroyasu S, Takuji T, Masahito S. Prevention of Colorectal Cancer by Targeting Obesity-Related Disorders and Inflammation. International Journal of Molecular Sciences. 2017;18(5):908.
156. Voutsadakis IA. Obesity and diabetes as prognostic factors in patients with colorectal cancer. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11:S109-S114.
157. Qian B-Z. Inflammation fires up cancer metastasis. Seminars in Cancer Biology. 2017;47:170-176.
158. Jingyi L, Pengnian Charles L, Binhua PZ. Inflammation Fuels Tumor Progress and Metastasis. Current Pharmaceutical Design. 2015;21(21):3032-3040.
159. Shi L, Wang L, Hou J, et al. Targeting roles of inflammatory microenvironment in lung cancer and metastasis. Cancer metastasis reviews. 2015;34(2):319-331.
160. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-867.
161. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. The Journal of Clinical Investigation. 2017;127(1):1-4.
162. Tang FY, Pai MH, Chiang EP. Consumption of high-fat diet induces tumor progression and epithelial-mesenchymal transition of colorectal cancer in a mouse xenograft model. The Journal of Nutritional Biochemistry. 2012;23(10):1302-1313.
163. Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. Journal of Endocrinology. 2013;216(1):T1-t15.
164. Hol J, Wilhelmsen L, Haraldsen G. The murine IL-8 homologues KC, MIP-2, and LIX are found in endothelial cytoplasmic granules but not in Weibel-Palade bodies. Journal of Leukocyte Biology. 2010;87(3):501-508.
165. Bozic CR, Gerard NP, von Uexkull-Guldenband C, et al. The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. The Journal of Biological Chemistry. 1994;269(47):29355-29358.
166. Kolb R, Phan L, Borcherding N, et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nature Communications. 2016;7(1):13007.
167. Yang P, Su C, Luo X, et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Letters. 2018;438:76-85.
168. Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Martinez-Orozco R, Salazar EP. Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. The International Journal of Biochemistry & Cell Biology. 2010;42(2):306-317.
169. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nature Reviews Immunology. 2018;18(12):773-789.
170. Wang D, DuBois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29(6):781-788.
171. Kolb R, Kluz P, Tan ZW, et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 2019;38(13):2351-2363.
172. Tanaka S, Saitoh O, Tabata K, et al. Medium-chain fatty acids stimulate interleukin-8 production in Caco-2 cells with different mechanisms from long-chain fatty acids1. Journal of Gastroenterology and Hepatology. 2001;16(7):748-754.
173. Bhattacharyya S, Dudeja PK, Tobacman JK. ROS, Hsp27, and IKKbeta mediate dextran sodium sulfate (DSS) activation of IkappaBa, NFkappaB, and IL-8. Inflammatory bowel diseases. 2009;15(5):673-683.
174. Xiao YT, Yan WH, Cao Y, Yan JK, Cai W. Neutralization of IL-6 and TNF-alpha ameliorates intestinal permeability in DSS-induced colitis. Cytokine. 2016;83:189-192.
175. Vitali R, Palone F, Cucchiara S, et al. Dipotassium Glycyrrhizate Inhibits HMGB1-Dependent Inflammation and Ameliorates Colitis in Mice. PloS one. 2013;8:e66527.
176. Oh SY, Cho KA, Kang JL, Kim KH, Woo SY. Comparison of experimental mouse models of inflammatory bowel disease. Int J Mol Med. 2014;33(2):333-340.
177. Kim CS, Park HS, Kawada T, et al. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. International Journal of Obesity. 2006;30(9):1347-1355.
178. Erreni M, Mantovani A, Allavena P. Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenvironment. 2011;4(2):141-154.
179. Mariani F, Sena P, Roncucci L. Inflammatory pathways in the early steps of colorectal cancer development. World journal of gastroenterology. 2014;20(29):9716-9731.
180. Dai X, Yan J, Fu X, et al. Aspirin Inhibits Cancer Metastasis and Angiogenesis via Targeting Heparanase. Clinical Cancer Research. 2017;23(20):6267-6278.
181. Guillem-Llobat P, Dovizio M, Bruno A, et al. Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget. 2016;7(22).
182. Lucotti S, Cerutti C, Soyer M, et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. The Journal of Clinical Investigation. 2019;129(5):1845-1862.
183. Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, Agarwal MG. Safety and Pharmacokinetics of a Solid Lipid Curcumin Particle Formulation in Osteosarcoma Patients and Healthy Volunteers. Journal of Agricultural and Food Chemistry. 2010;58(4):2095-2099.
184. Canouï-Poitrine F., Martinez-Tapia C., Guittet L., Bouvier AM. (2019) Epidemiology of Colorectal Cancer: Incidence, Survival, and Risk Factors. In: de'Angelis N., Di Saverio S., Brunetti F. (eds) Emergency Surgical Management of Colorectal Cancer. Hot Topics in Acute Care Surgery and Trauma. Springer, Cham
校內:2025-02-04公開