| 研究生: |
劉美華 Liu, Mei-Hua |
|---|---|
| 論文名稱: |
應用資料採礦於網路行銷之研究 A Study of the Application of Data Mining on Internet Marketing |
| 指導教授: |
王凱立
Wang, Kai-Li |
| 共同指導教授: |
顏盟峯
Yen, Meng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 資料採礦 、資料倉儲 、雲端運算 、網路行銷 |
| 外文關鍵詞: | Data Mining, Data Warehouse, Cloud Computing, Internet Marketing |
| 相關次數: | 點閱:130 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
網際網路與通信科技蓬勃興起,2015年全球上網人口32億約佔全球人口將近半數,研究指出資料量的產生每兩年增加一倍,其中非結構化(Unstructured)資料更佔了百分之九十。因此,如何透過資料採礦(Data Mining)發掘潛在有用的商情資訊,支援企業的行銷決策,增加企業的競爭優勢,已是現代企業所面臨網路行銷的迫切課題。
本研究試圖從外部多平台的網際網路資料庫角度,探討應用資料採礦於網路行銷之可行性。採用實證探究的方式,運用API(Application Programming Interface)從網際網路多樣性資料庫中自動擷取資料,建立資料倉儲,透過資料採礦技術關聯法則分析挖掘潛在有價值的商情資訊,並結合雲端運算(Cloud Computing)推出跨平台產品服務「雲端廣告(Cloud Business Outlet, CBO)」,發展出一套創新的網路行銷模式,以提供企業於網路行銷之參考使用。
根據本研究結果,以實際企業使用雲端廣告產品之深度訪談結果歸納與分析。說明應用資料採礦於網路行銷模式,可協助企業從網際網路多樣性的海量資料中自動網羅、篩選、發掘潛在客戶,提取商情資訊,買賣雙方得以即時互動。透過雲端運算平台大量、快速、自動撥發有主題性的視覺設計廣告,可增加曝光企業的品牌知名度,亦可經由自然過濾吸引真正有興趣的買家造訪網站,增加新客戶及詢問度來自不同國家(例如:俄國、韓國、印度、美國、加拿大等);也說明應用資料採礦於網路行銷是一個自動、即時的業務開發過程,可縮短企業尋找客戶的時間,減少人力成本,對於企業的網路行銷有一定程度的助益。
The Internet and communication technology have undergone substantial development. In 2015, the world's online population reached 3.2 billion, representing approximately half of the total global population. Research has indicated that the volume of data produced is doubling every 2 years. Unstructured data alone makes up 90% of online data. Therefore, applying data mining to obtain useful information, support marketing decisions, and increase competitive advantage is crucial for businesses engaging in Internet marketing.
This study investigated the feasibility of applying data mining to Internet marketing from the perspective of external multiplatform databases. The study adopted an empirical exploration approach that entailed employing an application programming interface (API) to automatically collect data from diversified databases to build a data warehouse. Next, data mining technology was applied through association rules to extract valuable data, applying cloud computing to produce a cross-platform product called a “cloud business outlet” (CBO). Through the CBO, an innovative Internet marketing model was devised, serving as a reference for businesses in marketing.
This study conducted in-depth interviews with businesses that used CBO products. The results indicated that the application of data mining on Internet marketing facilitated businesses in automatic filtering, discovering potential customers from big data, extracting useful information, and facilitating timely buyer–seller interactions. By sending thematic advertisements in large volumes rapidly and automatically, businesses achieved increased brand awareness, new customers, and inquiries; this represents an automatic, real-time business development process that reduces time and costs, creating benefits for businesses.
英文部分
1. Abell´o, A. and Romero, O. (2012). Service-Oriented Business Intelligence [ Aufaure, M.A. and Zim´anyi, E.(Eds.): eBISS 2011, LNBIP 96 ], Springer-Verlag Berlin Heidelberg, pp.156–185
2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. and Verkamo, I. (1996). Fast Discovery of Association Rules. In Advances in Knowledge Discovery and Data Mining, (Eds.) U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 307–328. Menlo Park, Calif.: AAAI Press.
3. Aufaure, M. A., Zimányi E. (2011). Business Intelligence(Eds.)First European Summer School, eBISS, Paris, France, Tutorial Lectures pp.3-8
4. Aufaure, M.A. and Zimanyi, E. (2012). Data Warehouses: Next Challenges Alejandro Vaisman and Esteban Zim´anyi Department of Computer and Decision Engineering(CoDE), Universit´e Libre de Bruxelles
5. Berry, J. 1994. Database Marketing. Business Week, September 5, 56–62.
6. Berry, J.A.M., and Linoff, G. (1997). Data mining techniques - for marketing, sales and customer support, New York, John Wiley and Sons Inc.
7. Bhatnagar, V. and Sharma, S. (2012). A Necessity For Information Security. Journal of Knowledge Management Practice, Vol. 13, No. 1
8. Brachman, R., and Anand, T. (1996). The Process of Knowledge Discovery in Databases: A Human Centered Approach. In Advances in Knowledge Discovery and Data Mining eds. ; U. Fayyad, G. Piatet- sky-Shapiro, P. Smyth, and R. Uthurusamy. Menlo Park, Calif., AAAI Press, pp.37–58
9. Brown, E. (2011). Final Version of NIST Cloud Computing Definition. Published NIST Tech Beat.
10. Castelluccio(1996)[ Integrating Web-Based Data into a Data Warehouse Chapter54 by Zhenyu Huang, Lei-da Chen, Mark N. Frolick p.671, 2003 ]
11. Cheeseman, P. (1990). On Finding the Most Probable Model. In Computational Models of Scientific Discovery and Theory Formation eds. J. Shrager and P. Lan- gley, San Francisco, Calif., Morgan Kauf-mann pp.73-95
12. Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), pp. 37-54
13. Flick, U. (2009). An Introduction to Qualitative Research Edition 4. Reinbekbei Hamburg, Rowohlt Taschenbuch Verlag GmbH.
14. Frawley, W., Piatetsky-Shapiro, G. and Matheus, C. (1992). Knowledge Discovery in Databases: An Overview. AI Magazine, pp. 213-228
15. Golden-Biddle K. (1993). Organizational dramas and dramatic stagings about them. Journal of Management Education, 17: pp39-49
16. Hand, D., Mannila, H. and Smyth, P. (2001). Principles of Data Mining. Cambridge, MIT Press.
17. Harvey, B. (1997). The Expanded ARF Model: Bridge to the Accountable Advertising Future, Journal of Advertising Research, p.13, March, April
18. Huang, Z., Chen, L.D. and Frolick, M. N. (2002). Integrating WEB-Based Data Into A Data Warehouse. Winter, Information Systems Management, pp. 23-34
19. Khurana, A. (2014). Research driven branding for your ecommerce business.
20. Monk, E. and Wagner B. (2006). Concepts in Enterprise Resource Planning , Boston, Thomson Course Technology.
21. Moss, L.T. (2003). Business Intelligence Roadmap The Complete Project Lifecycle for Decision-Support Applications. Boston USA, Pearson Education Inc., Larissa T. Moss and Shaku Atru, p.4
22. Shaw et al.(2001) [ Database Technologies Concepts, Methodologies Tools, and Applications p.1780 by John Erickson University of Nebraska – Omaha USA]
23. Sharplin, A. (1985). Strategic Management, New York, McGraw-Hill
24. Trafton, A. (2014). In the blink of an eye. MIT News Office, January 16
25. Two Crows Corporation (2005). Introduction to Data Mining and Knowledge Discovery. Third Edition. Potomac USA , Two Crows Corporation.
26. Vassiliadis, P., Vagena, Z., Skiadopoulos, S., Karayannidis, N. and Sellis, T. (2000). ARKTOS: A Tool For Data Cleaning and Transformation in Data Warehouse Environments. National Technical University of Athens.
27. Vishwanathan, V. (2014). The Big Picture: Visual Content Is the Future of Online Marketing By Don Sadler In: Advertising, Marketing & PR, Content Marketing, Social Media, Online Business.
28. Wedel, M. and Peters, R. (2007). Visual marketing. Psychology Press,
29. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J. and Steinberg, D. (2007). Top 10 algorithms in data mining Springer-Verlag London Limited.
中文部分
1. 葉重新(2001)教育研究法,台北市:心理出版社
2. 潘淑滿(2003)質性研究:理論與應用,台北市:心理出版社
3. 謝邦昌(2011)雲端運算的應用-資料採礦和商業智慧,科學發展463期pp.35-36
參考網站
1. www.nist.gov
2. www.sas.com
3. www.ieee.org
4. www.find.org.tw
5. www.wikipedia.org
6. blog.xuite.net/fred.china/journal/3673306
7. www.cloudopenlab.org.tw
8. www.allbusiness.com
9. www.mit.edu
10. www.gartner.com
11. www.anderson.ucla.edu
12. www.emarketer.com
13. ndltd.ncl.edu.tw
14. www.infovis-wiki.net
15. www.thefreelibrary.com
16. www.yeastgenome.org