簡易檢索 / 詳目顯示

研究生: 葉育賢
Yeh, Yu-Hsien
論文名稱: 應用FPGA加速第三代基因體之變異檢測神經網路模型研究
Application of FPGA to accelerate research on neural network model for mutation detection in third-generation genome
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 92
中文關鍵詞: DeepVariantFPGA變異檢測基因定序
外文關鍵詞: DeepVariant, FPGA, variant detection, genome sequencing
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,次世代定序(Next-Generation Sequencing)技術與第三代定序技術的發展徹底改變了基因體研究的面貌。與傳統的桑格定序方法相比,NGS 技術具有更高的通量、更低的成本和更短的計算時間,使研究人員能夠以前所未有的規模和深度探索基因體。而在其中的變異檢測是一項相當複雜的任務,基因變異包括單核苷酸變異(SNP)、插入缺失(InDel)、拷貝數變異(CNV)等多種類型,不同類型的變異具有不同的檢測難度。因此變異檢測算法需要對大量的基因體資料進行分析,因此計算量非常龐大。
    為了克服這個困難,並提高變異檢測效率, 本文旨在深入研究如何應用 FPGA 的系統與模組,以加速深度學習模型在 DeepVariant 中 variant calling 這個步驟的推理過程。我們將探討整合過程中所面臨的具體問題,包括硬體與軟體的整合、效能最佳化等方向。此外,也將對加速後的結果進行詳細分析,並與未加速的 CPU 版本進行對比,以評估加速效果及效能提升情況。

    In recent years, the development of Next-Generation Sequencing (NGS) technologyhas dramatically transformed the landscape of genomic research. Compared to traditional Sanger sequencing methods, NGS technology offers higher throughput, lower costs, and shorter computation times, allowing researchers to explore genomes on an unprecedented scale and depth. Among the tasks involved, variant detection is particularly complex, encompassing various types of genetic variations such as single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and copy number variations (CNVs). Each type of variant presents different detection challenges, requiring variant detection algorithms to analyze vast amounts of genomic data, leading to significant computational demands.
    To overcome these challenges and improve the efficiency of variant detection, this study aims to explore how to apply FPGA systems and modules to accelerate the inference process of deep learning models in the variant calling step of DeepVariant. We will investigate the specific issues encountered during the integration process, including hardware and software integration and performance optimization. Additionally, we will conduct a detailed analysis of the results post-acceleration and compare them with the unaccelerated CPU version to evaluate the effectiveness and performance improvements of the acceleration.

    摘要 i 誌謝 vii 目錄 viii 圖目錄 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 5 1.4 本文架構 6 第二章 文獻探討 7 2.1 生物中心法則 7 2.2 人類基因體與基因序列 10 2.3 第一代基因定序12 2.4 第二代基因定序14 2.5 第三代基因定序16 2.6 機器學習在基因定序上的應用 19 2.7 深度學習在基因定序上的應用 21 2.8 基因體變異檢測24 2.9 GAKT 26 2.10 DeepVariant 28 2.11 FPGA 簡介 30 2.12 FPGA 的重要應用領域 32 2.13 文獻總結 34 第三章 研究方法 35 3.1 資料 35 3.2 基因變異的種類 37 3.3 DeepVariant之運行流程 38 3.4 資料前處理 39 3.5 CNN 模型 41 3.6 資料後處理 42 3.7 實驗流程 43 第四章 FPGA 實現 46 4.2 Vitis AI 簡介 48 4.3 Vitis AI 工具 50 4.4 VitisAI 開發流程 53 4.5 環境安裝 55 4.6 模型的量化與部署 60 第五章 結果與討論 62 第六章 未來與展望 64 參考文獻 65

    [1]. Jarroux, Julien et al.“History, Discovery, and Classification of lncRNAs.”Advances in experimental medicine and biology vol. 1008 (2017): 1-46.doi: 10.1007/978-981-10-5203-3_1
    [2]. Minchin, Steve, and Julia Lodge.“Understanding biochemistry: structure and function of nucleic acids.”Essays in biochemistry vol. 63,4 (2019): 433-456.doi:10.1042/EBC20180038
    [3]. CRICK, F H. “On protein synthesis.” Symposia of the Society for Experimental Biology vol. 12 (1958): 138-63.
    [4]. WATSON, J., CRICK, F. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 171, 737–738 (1953). https://doi.org/10.1038/171737a0
    [5]. CRICK, F. Central Dogma of Molecular Biology. Nature 227, 561–563 (1970). https://doi.org/10.1038/227561a0
    [6]. Strasser, Bruno J. “A World in One Dimension: Linus Pauling, Francis Crick and the Central Dogma of Molecular Biology.” History and Philosophy of the Life Sciences, vol. 28, no. 4, 2006, pp. 491–512. JSTOR, http://www.jstor.org/stable/23334182. Accessed 18 May 2024.
    [7]. LEHMAN, I R et al. “Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli.” The Journal of biological chemistry vol. 233,1 (1958): 163-70.
    [8]. Bell, Stephen P, and Anindya Dutta. “DNA replication in eukaryotic cells.” Annual review of biochemistry vol. 71 (2002): 333-74. doi:10.1146/annurev.biochem.71.110601.135425
    [9]. JACOB, F, and J MONOD. “Genetic regulatory mechanisms in the synthesis of proteins.” Journal of molecular biology vol. 3 (1961): 318-56. doi:10.1016/s0022-2836(61)80072-7
    [10]. Liu, Xin et al. “RNA polymerase II transcription: structure and mechanism.” Biochimica et biophysica acta vol. 1829,1 (2013): 2-8. doi:10.1016/j.bbagrm.2012.09.003
    [11]. Sonenberg, Nahum, and Alan G Hinnebusch. “Regulation of translation initiation in eukaryotes: mechanisms and biological targets.” Cell vol. 136,4 (2009): 731-45. doi:10.1016/j.cell.2009.01.042
    [12]. Kapp, Lee D, and Jon R Lorsch. “The molecular mechanics of eukaryotic translation.” Annual review of biochemistry vol. 73 (2004): 657-704. doi:10.1146/annurev.biochem.73.030403.080419
    [13]. Hershey, John W B et al. “Principles of translational control: an overview.” Cold Spring Harbor perspectives in biology vol. 4,12 a011528. 1 Dec. 2012, doi:10.1101/cshperspect.a011528
    [14]. Collins, Francis S et al. “A vision for the future of genomics research.” Nature vol. 422,6934 (2003): 835-47. doi:10.1038/nature01626
    [15]. Lander, E S et al. “Initial sequencing and analysis of the human genome.” Nature vol. 409,6822 (2001): 860-921. doi:10.1038/35057062
    [16]. Venter, J C et al. “The sequence of the human genome.” Science (New York, N.Y.) vol. 291,5507 (2001): 1304-51. doi:10.1126/science.1058040
    [17]. ENCODE Project Consortium. “An integrated encyclopedia of DNA elements in the human genome.” Nature vol. 489,7414 (2012): 57-74. doi:10.1038/nature11247
    [18]. Lander, Eric S. “Initial impact of the sequencing of the human genome.” Nature vol. 470,7333 (2011): 187-97. doi:10.1038/nature09792
    [19]. Hattori, Masahira. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme vol. 50,2 (2005): 162-8.
    [20]. Lander, E S, and M S Waterman. “Genomic mapping by fingerprinting random clones: a mathematical analysis.” Genomics vol. 2,3 (1988): 231-9. doi:10.1016/0888-7543(88)90007-9
    [21]. Church, Deanna M et al. “Modernizing reference genome assemblies.” PLoS biology vol. 9,7 (2011): e1001091. doi:10.1371/journal.pbio.1001091
    [22]. Maxam, A M, and W Gilbert. “A new method for sequencing DNA.” Proceedings of the National Academy of Sciences of the United States of America vol. 74,2 (1977): 560-4. doi:10.1073/pnas.74.2.560
    [23]. Cariello, N F et al. “Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich.” American journal of human genetics vol. 42,5 (1988): 726-34.
    [24]. Sanger, F et al. “DNA sequencing with chain-terminating inhibitors.” Proceedings of the National Academy of Sciences of the United States of America vol. 74,12 (1977): 5463-7. doi:10.1073/pnas.74.12.5463
    [25]. Smith, L M et al. “Fluorescence detection in automated DNA sequence analysis.” Nature vol. 321,6071 (1986): 674-9. doi:10.1038/321674a0
    [26]. Prober, J M et al. “A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides.” Science (New York, N.Y.) vol. 238,4825 (1987): 336-41. doi:10.1126/science.2443975
    [27]. Mullis, K et al. “Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction.” Cold Spring Harbor symposia on quantitative biology vol. 51 Pt 1 (1986): 263-73. doi:10.1101/sqb.1986.051.01.032
    [28]. Behjati, Sam, and Patrick S Tarpey. “What is next generation sequencing?.” Archives of disease in childhood. Education and practice edition vol. 98,6 (2013): 236-8. doi:10.1136/archdischild-2013-304340
    [29]. Hu, Taishan et al. “Next-generation sequencing technologies: An overview.” Human immunology vol. 82,11 (2021): 801-811. doi:10.1016/j.humimm.2021.02.012
    [30]. Metzker, Michael L. “Sequencing technologies - the next generation.” Nature reviews. Genetics vol. 11,1 (2010): 31-46. doi:10.1038/nrg2626
    [31]. Caruthers, M H. “Gene synthesis machines: DNA chemistry and its uses.” Science (New York, N.Y.) vol. 230,4723 (1985): 281-5. doi:10.1126/science.3863253
    [32]. Mardis, Elaine R. “Next-generation DNA sequencing methods.” Annual review of genomics and human genetics vol. 9 (2008): 387-402. doi:10.1146/annurev.genom.9.081307.164359
    [33]. Bentley, David R et al. “Accurate whole human genome sequencing using reversible terminator chemistry.” Nature vol. 456,7218 (2008): 53-9. doi:10.1038/nature07517
    [34]. Gunderson, Kevin L et al. “Whole-genome genotyping.” Methods in enzymology vol. 410 (2006): 359-76. doi:10.1016/S0076-6879(06)10017-8
    [35]. Margulies, Marcel et al. “Genome sequencing in microfabricated high-density picolitre reactors.” Nature vol. 437,7057 (2005): 376-80. doi:10.1038/nature03959
    [36]. Shendure, Jay et al. “Accurate multiplex polony sequencing of an evolved bacterial genome.” Science (New York, N.Y.) vol. 309,5741 (2005): 1728-32. doi:10.1126/science.1117389
    [37]. Eid, John et al. “Real-time DNA sequencing from single polymerase molecules.” Science (New York, N.Y.) vol. 323,5910 (2009): 133-8. doi:10.1126/science.1162986
    [38]. Koren, Sergey et al. “Hybrid error correction and de novo assembly of single-molecule sequencing reads.” Nature biotechnology vol. 30,7 693-700. 1 Jul. 2012, doi:10.1038/nbt.2280
    [39]. Loman, Nicholas J et al. “A complete bacterial genome assembled de novo using only nanopore sequencing data.” Nature methods vol. 12,8 (2015): 733-5. doi:10.1038/nmeth.3444
    [40]. Kim, Kristi E et al. “Long-read, whole-genome shotgun sequence data for five model organisms.” Scientific data vol. 1 140045. 25 Nov. 2014, doi:10.1038/sdata.2014.45
    [41]. Jain, Miten et al. “Nanopore sequencing and assembly of a human genome with ultra-long reads.” Nature biotechnology vol. 36,4 (2018): 338-345. doi:10.1038/nbt.4060
    [42]. Tyler, Andrea D et al. “Evaluation of Oxford Nanopore's MinION Sequencing Device for Microbial Whole Genome Sequencing Applications.” Scientific reports vol. 8,1 10931. 19 Jul. 2018, doi:10.1038/s41598-018-29334-5
    [43]. Quick, Joshua et al. “Real-time, portable genome sequencing for Ebola surveillance.” Nature vol. 530,7589 (2016): 228-232. doi:10.1038/nature16996
    [44]. Jain, Miten et al. “MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry.” F1000Research vol. 6 760. 31 May. 2017, doi:10.12688/f1000research.11354.1
    [45]. Cortes, C., Vapnik, V. “Support-vector networks.” Mach Learning, 20, 273–297 (1995). https://doi.org/10.1007/BF00994018
    [46]. Libbrecht, Maxwell W, and William Stafford Noble. “Machine learning applications in genetics and genomics.” Nature reviews. Genetics vol. 16,6 (2015): 321-32. doi:10.1038/nrg3920
    [47]. Byvatov, Evgeny, and Gisbert Schneider. “Support vector machine applications in bioinformatics.” Applied bioinformatics vol. 2,2 (2003): 67-77.
    [48]. Breiman, L. “Random Forests.” Machine Learning 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
    [49]. Díaz-Uriarte, Ramón, and Sara Alvarez de Andrés. “Gene selection and classification of microarray data using random forest.” BMC bioinformatics vol. 7 3. 6 Jan. 2006, doi:10.1186/1471-2105-7-3
    [50]. Lunetta, Kathryn L et al. “Screening large-scale association study data: exploiting interactions using random forests.” BMC genetics vol. 5 32. 10 Dec. 2004, doi:10.1186/1471-2156-5-32
    [51]. Antony, Paul M A et al. “From systems biology to systems biomedicine.” Current opinion in biotechnology vol. 23,4 (2012): 604-8. doi:10.1016/j.copbio.2011.11.009
    [52]. Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects," in IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999-7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827. keywords: {Convolutional neural networks;Feature extraction;Neurons;Deep learning;Computer vision;Computer vision;convolutional neural networks (CNNs);deep learning;deep neural networks},
    [53]. Telenti, Amalio et al. “Deep learning of genomic variation and regulatory network data.” Human molecular genetics vol. 27,R1 (2018): R63-R71. doi:10.1093/hmg/ddy115
    [54]. Alipanahi, Babak et al. “Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.” Nature biotechnology vol. 33,8 (2015): 831-8. doi:10.1038/nbt.3300
    [55]. Angermueller, Christof et al. “Deep learning for computational biology.” Molecular systems biology vol. 12,7 878. 29 Jul. 2016, doi:10.15252/msb.20156651
    [56]. Mendel, Kayla et al. “Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography.” Academic radiology vol. 26,6 (2019): 735-743. doi:10.1016/j.acra.2018.06.019
    [57]. Leaman, Robert, and Zhiyong Lu. “TaggerOne: joint named entity recognition and normalization with semi-Markov Models.” Bioinformatics (Oxford, England) vol. 32,18 (2016): 2839-46. doi:10.1093/bioinformatics/btw343
    [58]. Li, Jiang et al. “ncRNA-eQTL: a database to systematically evaluate the effects of SNPs on non-coding RNA expression across cancer types.” Nucleic acids research vol. 48,D1 (2020): D956-D963. doi:10.1093/nar/gkz711
    [59]. Liang, Qiaoxing et al. “DeepMicrobes: taxonomic classification for metagenomics with deep learning.” NAR genomics and bioinformatics vol. 2,1 lqaa009. 19 Feb. 2020, doi:10.1093/nargab/lqaa009
    [60]. Manolio, Teri A et al. “Finding the missing heritability of complex diseases.” Nature vol. 461,7265 (2009): 747-53. doi:10.1038/nature08494
    [61]. Bamshad, Michael J et al. “Exome sequencing as a tool for Mendelian disease gene discovery.” Nature reviews. Genetics vol. 12,11 745-55. 27 Sep. 2011, doi:10.1038/nrg3031
    [62]. Biesecker, Leslie G, and Robert C Green. “Diagnostic clinical genome and exome sequencing.” The New England journal of medicine vol. 370,25 (2014): 2418-25. doi:10.1056/NEJMra1312543
    [63]. Puckelwartz, Megan J et al. “Supercomputing for the parallelization of whole genome analysis.” Bioinformatics (Oxford, England) vol. 30,11 (2014): 1508-13. doi:10.1093/bioinformatics/btu071
    [64]. McLaren, William et al. “The Ensembl Variant Effect Predictor.” Genome biology vol. 17,1 122. 6 Jun. 2016, doi:10.1186/s13059-016-0974-4
    [65]. Kircher, Martin et al. “A general framework for estimating the relative pathogenicity of human genetic variants.” Nature genetics vol. 46,3 (2014): 310-5. doi:10.1038/ng.2892
    [66]. Gargis, Amy S et al. “Assuring the quality of next-generation sequencing in clinical laboratory practice.” Nature biotechnology vol. 30,11 (2012): 1033-6. doi:10.1038/nbt.2403
    [67]. Li, Heng. “A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data.” Bioinformatics (Oxford, England) vol. 27,21 (2011): 2987-93. doi:10.1093/bioinformatics/btr509
    [68]. DePristo, Mark A et al. “A framework for variation discovery and genotyping using next-generation DNA sequencing data.” Nature genetics vol. 43,5 (2011): 491-8. doi:10.1038/ng.806
    [69]. Van der Auwera, Geraldine A et al. “From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.” Current protocols in bioinformatics vol. 43,1110 (2013): 11.10.1-11.10.33. doi:10.1002/0471250953.bi1110s43
    [70]. McKenna, Aaron et al. “The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.” Genome research vol. 20,9 (2010): 1297-303. doi:10.1101/gr.107524.110
    [71]. Yun, Taedong et al. “Accurate, scalable cohort variant calls using DeepVariant and GLnexus.” Bioinformatics (Oxford, England) vol. 36,24 (2021): 5582-5589. doi:10.1093/bioinformatics/btaa1081
    [72]. Rosenthal, Rachel et al. “DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution.” Genome biology vol. 17 31. 22 Feb. 2016, doi:10.1186/s13059-016-0893-4
    [73]. Poplin, Ryan et al. “A universal SNP and small-indel variant caller using deep neural networks.” Nature biotechnology vol. 36,10 (2018): 983-987. doi:10.1038/nbt.4235
    [74]. Lin, Yi-Lin et al. “Comparison of GATK and DeepVariant by trio sequencing.” Scientific reports vol. 12,1 1809. 2 Feb. 2022, doi:10.1038/s41598-022-05833-4
    [75]. Ip, Eddie K K et al. “dv-trio: a family-based variant calling pipeline using DeepVariant.” Bioinformatics (Oxford, England) vol. 36,11 (2020): 3549-3551. doi:10.1093/bioinformatics/btaa116
    [76]. Yun, Taedong et al. “Accurate, scalable cohort variant calls using DeepVariant and GLnexus.” Bioinformatics (Oxford, England) vol. 36,24 (2021): 5582-5589. doi:10.1093/bioinformatics/btaa1081
    [77]. Huang, Po-Jung et al. “DeepVariant-on-Spark: Small-Scale Genome Analysis Using a Cloud-Based Computing Framework.” Computational and mathematical methods in medicine vol. 2020 7231205. 1 Sep. 2020, doi:10.1155/2020/7231205
    [78]. S. M. Trimberger, "Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology," in Proceedings of the IEEE, vol. 103, no. 3, pp. 318-331, March 2015, doi: 10.1109/JPROC.2015.2392104.
    [79]. Nurvitadhi, Eriko et al. “Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?” Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2017): n. pag.
    [80]. Kuon and J. Rose, "Measuring the Gap Between FPGAs and ASICs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215, Feb. 2007, doi: 10.1109/TCAD.2006.884574.
    [81]. C. Kardaris, C. Kachris and D. Soudris, "A high-performance FPGA architecture for Acceleration of SVM Machine Learning Training," 2022 Panhellenic Conference on Electronics & Telecommunications (PACET), Tripolis, Greece, 2022, pp. 1-6, doi: 10.1109/PACET56979.2022.9976358.
    [82]. Itagi, S. Krishvadana, K. P. Bharath and M. Rajesh Kumar, "FPGA Architecture To Enhance Hardware Acceleration for Machine Learning Applications," 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2021, pp. 1716-1722, doi: 10.1109/ICCMC51019.2021.9418015.
    [83]. A. Putnam et al., "A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services," in IEEE Micro, vol. 35, no. 3, pp. 10-22, May-June 2015, doi: 10.1109/MM.2015.42.
    [84]. Kardaris, Charalampos et al. “A high-performance FPGA architecture for Acceleration of SVM Machine Learning Training.” 2022 Panhellenic Conference on Electronics & Telecommunications (PACET) (2022): 1-6.
    [85]. J. Fowers et al., "A Configurable Cloud-Scale DNN Processor for Real-Time AI," 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles, CA, USA, 2018, pp. 1-14, doi: 10.1109/ISCA.2018.00012.
    [86]. M. Yoshimi, C. Wu and T. Yoshinaga, "Accelerating BLAST Computation on an FPGA-enhanced PC Cluster," 2016 Fourth International Symposium on Computing and Networking (CANDAR), Hiroshima, Japan, 2016, pp. 67-76, doi: 10.1109/CANDAR.2016.0025.
    [87]. C. Leber, B. Geib and H. Litz, "High Frequency Trading Acceleration Using FPGAs," 2011 21st International Conference on Field Programmable Logic and Applications, Chania, Greece, 2011, pp. 317-322, doi: 10.1109/FPL.2011.64.
    [88]. Y. Guan et al., "FP-DNN: An Automated Framework for Mapping Deep Neural Networks onto FPGAs with RTL-HLS Hybrid Templates," 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, CA, USA, 2017, pp. 152-159, doi: 10.1109/FCCM.2017.25.
    [89]. E. Chung et al., "Serving DNNs in Real Time at Datacenter Scale with Project Brainwave," in IEEE Micro, vol. 38, no. 2, pp. 8-20, Mar./Apr. 2018, doi: 10.1109/MM.2018.022071131.
    [90]. S. I. Venieris and C. -S. Bouganis, "fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs," 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Washington, DC, USA, 2016, pp. 40-47, doi: 10.1109/FCCM.2016.22.
    [91]. Xuechao Wei et al., "Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs," 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2017, pp. 1-6, doi: 10.1145/3061639.3062207.
    [92]. A.M. Caulfield et al., "A cloud-scale acceleration architecture," 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 2016, pp. 1-13, doi: 10.1109/MICRO.2016.7783710.
    [93]. M. Baldi, D. Crupnicoff and S. Gai, "Programmable Dataplane Architecture for Distributed Services at the Network Edge," 2020 Seventh International Conference on Software Defined Systems (SDS), Paris, France, 2020, pp. 107-114, doi: 10.1109/SDS49854.2020.9143973.
    [94]. Bruel, Ange-Line et al. “Next-generation sequencing approaches and challenges in the diagnosis of developmental anomalies and intellectual disability.” Clinical genetics vol. 98,5 (2020): 433-444. doi:10.1111/cge.13764
    [95]. Sudmant, Peter H et al. “An integrated map of structural variation in 2,504 human genomes.” Nature vol. 526,7571 (2015): 75-81. doi:10.1038/nature15394
    [96]. Zook, Justin M et al. “A robust benchmark for detection of germline large deletions and insertions.” Nature biotechnology vol. 38,11 (2020): 1347-1355. doi:10.1038/s41587-020-0538-8
    [97]. Li, Heng, and Nils Homer. “A survey of sequence alignment algorithms for next-generation sequencing.” Briefings in bioinformatics vol. 11,5 (2010): 473-83. doi:10.1093/bib/bbq015
    [98]. M. Tibaldi and C. Pilato, "A Survey of FPGA Optimization Methods for Data Center Energy Efficiency," in IEEE Transactions on Sustainable Computing, vol. 8, no. 3, pp. 343-362, 1 July-Sept. 2023, doi: 10.1109/TSUSC.2023.3273852.
    [99]. A. Shafiee et al., "ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars," 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea (South), 2016, pp. 14-26, doi: 10.1109/ISCA.2016.12.
    [100]. Poplin, R., Chang, PC., Alexander, D. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol 36, 983–987 (2018).
    [101]. Shumate, Alaina et al. “Assembly and annotation of an Ashkenazi human reference genome.” Genome biology vol. 21,1 129. 2 Jun. 2020, doi:10.1186/s13059-020-02047-7
    [102]. Brand, Fabian et al. “Extending DeepTrio for sensitive detection of complex de novo mutation patterns.” NAR genomics and bioinformatics vol. 6,1 lqae013. 10 Feb. 2024, doi:10.1093/nargab/lqae013
    [103]. Kalleberg, Jenna et al. “Overcoming Limitations to Deep Learning in Domesticated Animals with TrioTrain.” bioRxiv : the preprint server for biology 2024.04.15.589602. 20 Apr. 2024, doi:10.1101/2024.04.15.589602. Preprint.
    [104]. English, Adam C et al. “Analysis and benchmarking of small and large genomic variants across tandem repeats.” Nature biotechnology, 10.1038/s41587-024-02225-z. 26 Apr. 2024, doi:10.1038/s41587-024-02225-z
    [105]. Visscher, Peter M et al. “10 Years of GWAS Discovery: Biology, Function, and Translation.” American journal of human genetics vol. 101,1 (2017): 5-22. doi:10.1016/j.ajhg.2017.06.005
    [106]. 1000 Genomes Project Consortium et al. “A map of human genome variation from population-scale sequencing.” Nature vol. 467,7319 (2010): 1061-73. doi:10.1038/nature09534
    [107]. Redon, Richard et al. “Global variation in copy number in the human genome.” Nature vol. 444,7118 (2006): 444-54. doi:10.1038/nature05329
    [108]. Cordell, Heather J. “Detecting gene-gene interactions that underlie human diseases.” Nature reviews. Genetics vol. 10,6 (2009): 392-404. doi:10.1038/nrg2579
    [109]. Stankiewicz, Paweł, and James R Lupski. “Structural variation in the human genome and its role in disease.” Annual review of medicine vol. 61 (2010): 437-55. doi:10.1146/annurev-med-100708-204735
    [110]. Ward, Lucas D, and Manolis Kellis. “HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.” Nucleic acids research vol. 40,Database issue (2012): D930-4. doi:10.1093/nar/gkr917
    [111]. G. Refai-Ahmed et al., "Establishing Thermal Air-cooled Limit for High Performance Electronics Devices," 2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2020, pp. 347-354, doi: 10.1109/EPTC50525.2020.9315139.
    [112]. P. Chen, P. Manjunath, S. Wijeratne, B. Zhang and V. Prasanna, "Exploiting On-Chip Heterogeneity of Versal Architecture for GNN Inference Acceleration," 2023 33rd International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, 2023, pp. 219-227, doi: 10.1109/FPL60245.2023.00038.
    [113]. F. Ortiz et al., "Energy-Efficient on-Board Radio Resource Management for Satellite Communications via Neuromorphic Computing," in IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 169-189, 2024, doi: 10.1109/TMLCN.2024.3352569.
    [114]. Ayman, Saher. (2023). Title DNA Extraction and quantification. 10.13140/RG.2.2.36825.70249.
    [115]. https://zh.wikipedia.org/zh-tw/%E4%B8%AD%E5%BF%83%E6%B3%95%E5%89%87
    [116]. https://www.wikiwand.com/zh/DNA%E5%A4%8D%E5%88%B6
    [117]. https://www.istockphoto.com/hk/%E5%90%91%E9%87%8F/diagram-of-transcription-dna-directed-synthesis-of-rna-gm1385627873-444281548
    [118]. https://commons.wikimedia.org/wiki/File:Human_genome_project_timeline.jpg
    [119]. https://www.slideshare.net/slideshow/msc-iv-semester_dna-profiling-dna-sequencing-pdf/268464514
    [120]. https://medium.com/intern-in-nhri/basic-bioinformatics-sanger-vs-ngs-64cdab3bb894
    [121]. https://www.researchgate.net/figure/Principles-of-Illumina-Solexa-sequencing-The-DNA-sequencing-library-is-prepared-by_fig9_340583975
    [122]. Ardui, Simon et al. “Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.” Nucleic acids research vol. 46,5 (2018): 2159-2168. doi:10.1093/nar/gky066
    [123]. https://www.biorender.com/template/nanopore-sequencing
    [124]. https://medium.com/chung-yi/ml%E5%85%A5%E9%96%80-%E5%8D%81%E4%B8%83-%E9%9A%A8%E6%A9%9F%E6%A3%AE%E6%9E%97-random-forest-6afc24871857
    [125]. https://www.researchgate.net/figure/Proposed-adopted-Convolutional-Neural-Network-CNN-model_fig2_332407214
    [126]. https://medium.com/hackergirly/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E7%9A%84%E7%AC%AC%E4%B8%80%E5%80%8B%E5%8D%81%E5%B9%B4-495b1a5bd7a8
    [127]. https://yourgene.pixnet.net/blog/post/94090920
    [128]. https://github.com/google/deepvariant
    [129]. https://www.researchgate.net/figure/DeepVariant-workflow-overview-Before-DeepVariant-NGS-reads-are-first-aligned-to-a_fig1_327851139
    [130]. hhttps://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/
    [131]. https://opensource.googleblog.com/2021/04/analyzing-genomic-data-in-families-with-deep-learning.html
    [132]. https://research.google/blog/deepvariant-highly-accurate-genomes-with-deep-neural-networks/
    [133]. https://www.electronicdesign.com/markets/automation/video/21234012/electronic-design-versal-card-streamlines-acap-fpga-ai-development
    [134]. https://docs.amd.com/r/en-US/ug1414-vitis-ai/Vitis-AI-Overview

    無法下載圖示 校內:2029-07-29公開
    校外:2029-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE