簡易檢索 / 詳目顯示

研究生: 李育華
Li, Yu-Hua
論文名稱: 整合慣性導航/衛星定位/輪速計/向量式高精地圖之準緊耦合車道級絕對精度導航方案
Lane-Level Accuracy Navigation Design Based on INS/GNSS/Odometer Semi-Tightly Coupled Integration Scheme with HD Vector Map
指導教授: 江凱偉
Chiang, Kai-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 215
中文關鍵詞: 先進輔助駕駛系統高度自動駕駛多路徑效應非直視性訊號慣性導航系統全球衛星定位系統輪速計高精地圖
外文關鍵詞: ADAS, HAD, multipath, NLOS, INS, GNSS, Odometer, HD map
相關次數: 點閱:254下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年隨著車用導航的需求增加,提供精準與穩健的導航估計技術已成為關鍵。為了滿足先進輔助駕駛系統與高度自動駕駛的應用,其導航系統的絕對定位精度需優於1.5公尺(車道級)才能滿足其車輛控制及輔助導引的各項要求。本論文著重在發展與研究基於車用級感測器的整合架構,提升其導航效能俾滿足車道級的絕對定位需求。
    目前以全球衛星定位系統為核心的導航系統,受限於多路徑效應與非直視性訊號等錯誤觀測量干擾,其定位效能在都市地區受到極大的挑戰。一般而言,該技術整合慣性導航系統進行效能改善是測繪製圖等專業領域的經典手段;然而其仰賴高階感測器作為精準定位的解決方案,無法切合民用車端導航市場所需。傳統低成本車用級衛星接收機、慣性導航系統、輪速計與氣壓計的整合方案,於衛星錯誤訊號環伺的艱困環境中均難以有效滿足其定位精度需求。近期於高度自動駕駛的導航解決方案中,基於光學類型感測器,使用同步定位與地圖建構技術與高精地圖點雲資料,透過匹配與地圖融合方法來達成精準定位,在雛型發展的過程中蔚為主流。惟此類方案的困難點在於:(1)光學感測器如光達、相機不具成本效益;(2)高精地圖點雲資料過於龐大,難以廣泛應用;(3)運算量大,即時導航需配備高階運算電腦。不利於普及一般民用車輛。
    有鑑於此,本論文針對車道級定位精度需求,發展基於車用級感測器之無縫導航解決方案,除對目前一般車用導航方案進行全面性的分析,並提出多項整合策略與方法如下:(1)結合載波相位跨時差分觀測量,設計具位置域平滑化效果之衛星定位解算濾波器(GNSS filter),並結合穩健回歸方法(robust regression)進行觀測量適應性調權;(2)設計準緊耦合式慣導系統與衛星定位系統整合架構,提出基於慣導輔助之週波脫落偵測機制(INS-aided cycle slip detection)、錯誤訊號緩解方法、基於慣性測量單元零偏誤差與位置狀態誤差即時監測之錯誤偵錯與排除機制;(3)建構基於向量高精地圖輔助機制,提出側向位置向量更新模型、週波未定值解算結果驗證方法、衛星觀測量錯誤偵錯與排除機制。此外,本研究同時針對道路級應用精度(< 5 m),提出衛星定位/輪速計整合方案,發展基於輪速輔助之觀測模型與錯誤偵錯與排除機制。
    本論文採用導航等級或高階戰術級的慣性導航系統輸出軌跡作為參考真值,並於衛星反射訊號充斥之城市峽谷地區進行驗證。實驗結果顯示,使用車用級感測器,基於準緊耦合之慣導系統/衛星定位/輪速計整合架構,搭配向量高精地圖輔助與本研究提出各項方法,在都市環境下於三維方向可以滿足車道級絕對定位精度。同時,基於衛星定位/輪速計之整合方案於單點定位模式下亦能滿足道路級定位精度。本研究整合策略與方法具運算及成本效益,且穩定性高,能實際布署至一般車用設備,可望在各項民生導航用途上有顯著貢獻。

    With the increasing demands for seamless land-vehicle navigation, systems with robust performance are required. For advanced driver assistance systems (ADAS) and highly automated driving (HAD) applications, studies are recently conducted to achieve high accuracy and robustness of on-vehicle guidance. This dissertation aims to enhance the implementation of automotive-grade sensors for absolutely lane-level navigation (< 1.5 m) in 3-D.
    In current navigation systems based on a Global Navigation Satellite System (GNSS), the faulty signals from multipath and non-line-of-sight (NLOS) reception are significant challenges in urban areas. Conventionally, the fusion of GNSS and inertial navigation system (INS) is widely expected to improve the performance and bridge GNSS outages. The integration based high-end INS and GNSS components may provide an accurate solution but is not the market-favorable design. On the other hand, its low-cost combination with the aid of common automotive sensors such as odometer and barometer struggles to improve the performance during multipath/NLOS contamination, especially for the vertical accuracy in the long-term. The current solution aiming to HAD intends to use simultaneous and localization (SLAM) algorithms with optical sensors and a high-definition map (HD map) with point cloud to fulfill the accuracy requirement. However, there are challenges: (1) optical sensors, such as Light Detection And Ranging (LiDAR) and camera, are not cost-effective; (2) an HD point-cloud map has huge data size, difficult to implement in the current vehicle; (3) high-end computing power is significant for the real-time navigation.
    In the far majority of prior research, techniques and integrated systems proposed to solve or mitigate problems are for HAD prototypes. The capability to obtain a lane-level navigation solution in 3-D with a sub-meter level in the vertical for general vehicles using automotive-grade sensors is beneficial for promoting ADAS and HAD applications. This dissertation evaluates the currently common solutions and proposes a lane-level accuracy solution using the following designs: (1) time-differenced carrier phase (TDCP) embedded GNSS filter with robust regression for position-domain smoothing and adaptive reweighting; based on these approaches, an alternative scheme without INS, GNSS/Odometer integration with odometer-based measurement model and FDE, is additionally investigated; (2) INS/GNSS semi-tightly-coupled (semi-TC) integration scheme with false-GNSS mitigation, by INS-aided cycle slip detection, faulty-signals mitigation, and fault detection and exclusion (FDE) based on on-line monitoring of IMU bias error state and position error state; (3) HD vector map aiding with the proposed measurement model, validation for ambiguity resolution (AR), replacing the GNSS float solution in the vertical with the HD vector map, and measurement-domain FDE.
    These proposed designs are evaluated and based on a large number of trajectories collected by different sensors in various scenarios. In general, the 3-D performance of the proposed designs, based on INS/GNSS/Odometer semi-TC integration scheme with HD vector map aiding, can satisfy the lane-level accuracy requirement. The vertical accuracy can reach to sub-meter level, which benefits not only the identification of complex scenarios in the vertical for human driving (ADAS) but electric vehicles due to power management and computer decision (HAD). The proposed designs constitute an effective computing solution and collective compensation for the individual drawbacks of the integrated system, with great potential for current and future navigation applications, including ADAS and HAD.

    摘要 ................................................I ABSTRACT...............................................III ACKNOWLEDGMENTS............................................V TABLES OF CONTENT ................................VI LIST OF FIGURES......................................X LIST OF TABLES.......................................XVII LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE........ XIX Chapter 1. Introduction 1 1.1 Backgrounds................................... 1 1.2 Motivation and Problem Statement................. 5 1.3 Scope and Objectives ......................... 8 1.4 Thesis Outline ..................................... 11 Chapter 2. Fundamental of Navigation Systems............ 15 2.1 Global Navigation Satellite System ................. 15 2.1.1 New Generation GNSS Signal: L5/E5a................. 16 2.1.2 GNSS Performance and Signal Reflection ........... 18 2.2 Inertial Navigation System..................... 25 2.2.1 Inertial Sensor Calibration ............... 26 2.2.2 Error Modeling............................. 27 2.2.3 Initial Alignment ........................... 29 Chapter 3. Multi-Sensors Integration Scheme ........... 32 3.1 Loosely Coupled Scheme.............................. 32 3.2 Tightly Coupled Scheme....................... 35 3.3 Other Aiding Sources for Automotive Navigation ... 38 3.3.1 Measurement Models of Motion Constraints .......... 39 3.3.2 Odometer Sensor and Vehicle-frame Velocity Measurement Model...... 41 3.3.3 Barometer Sensor and Barometric Height Measurement Model..... 43 Chapter 4. HD Vector Maps Aided Navigation ........... 47 4.1 Establishment of HD map ..................... 47 4.2 HD map Searching Mechanism for Navigation Aiding .... 52 4.3 Sensors Integration based Point-to-Line Matching Algorithm for HD map................. 56 Chapter 5. The Proposed Faulty Signal Monitoring and Integration Design .................. 59 5.1 Proposed GNSS Filter Design with OBDII Odometer Aiding ........... 59 5.1.1 TDCP-embedded EKF......................... 61 5.1.2 Measurement Update and Aiding from Odometer........ 65 5.1.3 Robust Regression ......................... 70 5.1.4 GNSS/Odometer Integration Scheme .............. 72 5.2 Proposed INS/GNSS Semi-TC Integration with False-GNSS Monitoring................... 74 5.2.1 INS-aided Cycle Slip Detection and Faulty-Signals Mitigation................... 76 5.2.2 INS-aided FDE based on on-line Monitoring of State Estimation ............... 78 5.2.3 INS/GNSS Semi-TC Scheme ..................... 81 5.3 INS/GNSS/Odometer Integration with HD Vector Map Aiding ..... 84 5.3.1 Proposed HD Vector Map Measurement Model, FDE in Measurement Domain, and AR Enhancement................ 85 5.3.2 HD Vector Map Aided INS/GNSS/Odometer Integration Scheme .............. 92 Chapter 6. Field Testing, Results and Discussion ........ 95 6.1 Assessment for INS/GNSS/Odometer/Barometer Integration in LC and TC Scheme in a GNSS-Degraded Environment....... 95 6.1.1 Experimental Results, Analysis, and Discussion for Different Combinations 98 6.1.2 Summary of Assessment .................... 110 6.2 Experiment for TDCP-Smoothed GNSS/Odometer Integration Scheme with Vehicular-Motion Constraint and Robust Regression........... 112 6.2.1 Experimental Results, Analysis, and Discussion for Proposed GNSS/Odometer Design..................... 117 6.2.2 Summary of Investigation...................... 131 6.3 Experiment for Proposed Semi-TC INS/GNSS Integration with False-GNSS Monitoring ........................ 131 6.3.1 Experimental Results, Analysis, and Discussion for Proposed Semi-TC Design ..................... 135 6.3.2 Summary of Evaluation ............................ 148 6.4 Experiment for Proposed INS/GNSS/Odometer Integration with HD Vector Map Aiding .......................... 148 6.4.1 Experimental Results, Analysis, and Discussion for Proposed Methods Based on HD Vector Map Aiding ........ 154 6.4.2 Summary of Demonstration.................... 168 Chapter 7. Conclusions and Future Works........... 170 7.1 Conclusions ................................ 170 7.2 List of Contributions ........................ 171 7.3 Future works.............................. 172 References.................................. 176 Appendix A. Fundamental of GNSS Positioning ........ 189 SPP Navigation ................................ 189 DGNSS Navigation.............................. 195 Appendix B. INS Mechanization and System Model Design... 208 INS Mechanization.......................... 208 Transition Matrix in INS EKF ................. 210 Appendix C. List of Reference Frames................ 212 Inertial Frame ............................... 212 Earth Fixed Frame.............................. 212 Navigation Frame............................... 213 Body Frame ............................... 214 Platform Frame................................ 214

    Adem, G. H. (2010). Static calibration of tactical grade inertial measurements units. Report No. 496, Geodetic Science.
    Aftatah, M., Lahrech, A., & Abounada, A. (2016). Fusion of GPS/INS/Odometer measurements for land vehicle navigation with GPS outage. In 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech) (pp. 48-55). IEEE.
    Aggarwal, P. (2010). MEMS-based integrated navigation. Artech House.
    Angrisano, A. (2010). GNSS/INS integration methods. Dottorato di ricerca (PhD) in Scienze Geodetiche e Topografiche Thesis, Universita’degli Studi di Napoli PARTHENOPE, Naple, 21.
    Artese, G., & Trecroci, A. (2008). Calibration of a low cost MEMS INS sensor for an integrated navigation system. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci, 877-882.
    Autoware Map Data and Formats working group. (2019).
    Basnayake, C., Williams, T., Alves, P., & Lachapelle, G. (2010). Can GNSS Drive V2X?. GPS World, 21(10), 35-43.
    Besl, P. J., & McKay, N. D. (1992). Method for registration of 3-D shapes. In Sensor fusion IV: control paradigms and data structures (Vol. 1611, pp. 586-606). International Society for Optics and Photonics.
    Biber, P., & Straßer, W. (2003). The normal distributions transform: A new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453) (Vol. 3, pp. 2743-2748). IEEE.
    Bethel, J. S., Lee, C., & Landgrebe, D. A. (2000). Geometric Registration of Hyperspectral Airborne Pushbroom Data. Proceedings of the ISPRS XIX, 16-23.
    Bonnor, N. (2014). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems–
    Second EditionPaul D. Groves Artech House, 2013, 776 pp ISBN-13: 978-1-60807-005-3. The Journal of Navigation, 67(1), 191-192.
    Brenner, M. (1996). Integrated GPS/inertial fault detection availability. Navigation, 43(2), 111-130.
    Brown, R. G., & Hwang, P. Y. (2012). Introduction to random signals and applied Kalman filtering: with MATLAB exercises (Vol. 4). New York, NY, USA: John Wiley & Sons.
    Cabinet Office (Government of Japan). (2018). Quasi-Zenith Satellite System Interface Specification Centimeter Level Augmentation Service (ISQZSS-L6-001). Cabinet Office, Tech. Rep.
    Cederholm, P., & Plausinaitis, D. (2014). Cycle Slip Detection in Single Frequency GPS Carrier observations using expected Doppler shift. Nordic journal of surveying and real estate research, 10(1).
    Chang, H. W. (2014). Enhanced Portable Navigation for Cycling Applications. University of Calgary.
    Chiang, K. W., & Huang, Y. W. (2008). An intelligent navigator for seamless INS/GPS integrated land vehicle navigation applications. Applied Soft Computing, 8(1), 722-733.
    Chiang, K. W., Chang, H. W., Li, Y. H., Tsai, G. J., Tseng, C. L., Tien, Y. C., & Hsu, P. C. (2019). Assessment for ins/gnss/odometer/barometer integration in loosely-coupled and tightly-coupled scheme in a gnss-degraded environment. IEEE Sensors Journal, 20(6), 3057-3069.
    Chiang, K. W., Chang, H. W., Li, Y. H., Hsu, L. T., & Hsu, P. C. (2020). TDCP-Smoothing-Embedded INS/GNSS Integration Scheme Utilizing INS-Aided Cycle-Slip Detection and Faulty-Signal Monitoring Method for Land Vehicular Applications. Manuscript submitted for publication.
    Chiang, K. W., Li, Y. H., Hsu, L. T., & Chu, F. Y. (2020). The Design a TDCP-Smoothed GNSS/Odometer Integration Scheme with Vehicular-Motion Constraint and Robust Regression. Remote Sensing, 12(16), 2550.
    Chiang, K. W., Tsai, G. J., Chang, H. W., Joly, C., & Ei-Sheimy, N. (2019). Seamless navigation and mapping using an INS/GNSS/grid-based SLAM semi-tightly coupled integration scheme. Information Fusion, 50, 181-196.
    Chiang, K. W., Tsai, G. J., Li, Y. H., Li, Y., & El-Sheimy, N. (2020). Navigation Engine Design for Automated Driving Using INS/GNSS/3D LiDAR-SLAM and Integrity Assessment. Remote Sensing, 12(10), 1564.
    China Satellite Navigation Office. (2017). BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signals B1C and B2a (Test Version). China Satellite Navigation Office, Tech. Rep.
    Crosta, P., Zoccarato, P., Lucas, R., & De Pasquale, G. (2018). Dual Frequency mass-market chips: test results and ways to optimize PVT performance. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018) (pp. 323-333).
    Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. IEEE transactions on pattern analysis and machine intelligence, 29(6), 1052-1067.
    De Jonge, P., & Tiberius, C. (1996). The LAMBDA Methods for Integer Ambiguity Estimation: Implementation Aspects (Vol. 12). Verlag der Delft University of Technology.
    Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on robotics and automation, 17(3), 229-241.
    Einhorn, E., & Gross, H. M. (2013). Generic 2D/3D SLAM with NDT maps for lifelong application. In 2013 European Conference on Mobile Robots (pp. 240-247). IEEE.
    El-Sheimy, N., Chiang, K. W., & Noureldin, A. (2006). The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments. IEEE Transactions on instrumentation and measurement, 55(5), 1606-1615.
    European Union. (2010). European GNSS (Galileo) open service: Signal in space interface control document. Office for Official Publications of the European Communities.
    Farrell, J. (2008). Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc..
    Farrell, J., & Barth, M. (1999). The global positioning system and inertial navigation (Vol. 61). New York, NY, USA:: Mcgraw-hill.
    Ford, T. J., & Hamilton, J. (2003). A new positioning filter: Phase smoothing in the position domain. Navigation, 50(2), 65-78.
    Freda, P., Angrisano, A., Gaglione, S., & Troisi, S. (2015). Time-differenced carrier phases technique for precise GNSS velocity estimation. GPS Solutions, 19(2), 335-341.
    Gaglione, S., Angrisano, A., & Crocetto, N. (2019). Robust Kalman Filter applied to GNSS positioning in harsh environment. In 2019 European Navigation Conference (ENC) (pp. 1-6). IEEE.
    Gaglione, S., Innac, A., Carbone, S. P., Troisi, S., & Angrisano, A. (2017, May). Robust estimation methods applied to GPS in harsh environments. In 2017 European Navigation Conference (ENC) (pp. 14-25). IEEE.
    Gebre-Egziabher, D., & Gleason, S. (2009). GNSS applications and methods. Artech House.
    Gelb, A. (Ed.). (1974). Applied optimal estimation. MIT press.
    Georgy, J., Noureldin, A., & Bayoumi, M. (2009). Mixture particle filter for low cost INS/Odometer/GPS integration in land vehicles. In VTC Spring 2009-IEEE 69th Vehicular Technology Conference (pp. 1-5). IEEE.
    Godha, S. (2006). Performance evaluation of low cost MEMS-based IMU integrated with GPS for land vehicle navigation application. UCGE report, (20239).
    GPS Directorate. (2019). NAVSTAR GPS Space Segment/Navigation User Segment Interfaces (IS-GPS-200K). GPS Directorate, Tech. Rep.
    Greenfeld, J. S. (2002). Matching GPS observations to locations on a digital map. In 81th annual meeting of the transportation research board (Vol. 1, No. 3, pp. 164-173).
    Grewal, M. S., Weill, L. R., & Andrews, A. P. (2007). Global positioning systems, inertial navigation, and integration. John Wiley & Sons.
    Groves, P. D., Jiang, Z., Rudi, M., & Strode, P. (2013). A portfolio approach to NLOS and multipath mitigation in dense urban areas. The Institute of Navigation.
    Gu, Y., Hsu, L. T., & Kamijo, S. (2015). GNSS/onboard inertial sensor integration with the aid of 3-D building map for lane-level vehicle self-localization in urban canyon. IEEE Transactions on Vehicular Technology, 65(6), 4274-4287.
    Hashemi, M., & Karimi, H. A. (2016). A weight-based map-matching algorithm for vehicle navigation in complex urban networks. Journal of Intelligent Transportation Systems, 20(6), 573-590.
    Ho, B. J., Martin, P., Swaminathan, P., & Srivastava, M. (2015). From pressure to path: Barometer-based vehicle tracking. In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments (pp. 65-74).
    Hou, H. (2004). Modeling inertial sensors errors using Allan variance. University of Calgary, Department of Geomatics Engineering.
    Hsu, L. T. (2018). Analysis and modeling GPS NLOS effect in highly urbanized area. GPS solutions, 22(1), 7.
    Hsu, L. T., Gu, Y., & Kamijo, S. (2015). NLOS correction/exclusion for GNSS measurement using RAIM and city building models. Sensors, 15(7), 17329-17349.
    Hsu, L. T., Gu, Y., & Kamijo, S. (2016). 3D building model-based pedestrian positioning method using GPS/GLONASS/QZSS and its reliability calculation. GPS solutions, 20(3), 413-428.
    Hsu, L. T., Tokura, H., Kubo, N., Gu, Y., & Kamijo, S. (2017). Multiple faulty GNSS measurement
    exclusion based on consistency check in urban canyons. IEEE Sensors Journal, 17(6), 1909-1917.
    Hsu, P. C. (2019). An Automotive-grade INS/HD Maps/Odometer/GNSS Integration Scheme for Lane-level Navigation Application in Urban Area. National Cheng Kung University.
    Jan, S. S., & Lu, S. C. (2010). Implementation and evaluation of the WADGPS system in the Taipei flight information region. Sensors, 10(4), 2995-3022.
    Jalayer, M., Zhou, H., & Zhang, B. (2016). Evaluation of navigation performances of GPS devices near interchange area pertaining to wrong-way driving. Journal of Traffic and Transportation Engineering (English Edition), 3(6), 593-601.
    Javanmardi, E., Gu, Y., Javanmardi, M., & Kamijo, S. (2019). Autonomous vehicle self-localization based on abstract map and multi-channel LiDAR in urban area. IATSS research, 43(1), 1-13.
    Joerger, M., & Spenko, M. (2017). Towards navigation safety for autonomous cars. Inside GNSS.
    Joubert, N., Reid, T. G., & Noble, F. (2020). Developments in Modern GNSS and Its Impact on Autonomous Vehicle Architectures. arXiv preprint arXiv:2002.00339.
    Kaplan, E., & Hegarty, C. (2005). Understanding GPS: principles and applications. Artech house.
    Kim, D., & Langley, R. B. (2000). GPS ambiguity resolution and validation: methodologies, trends and issues. In Proceedings of the 7th GNSS Workshop–International Symposium on GPS/GNSS, Seoul, Korea (Vol. 30, No. 2.12).
    Klobuchar, J. A. (1987). Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on aerospace and electronic systems, (3), 325-331.
    Knight, N. L., & Wang, J. (2009). A comparison of outlier detection procedures and robust estimation methods in GPS positioning. Journal of Navigation, 62(4), 699.
    Kuusniemi, H., Lachapelle, G., & Takala, J. H. (2004). Position and velocity reliability testing in degraded GPS signal environments. GPS solutions, 8(4), 226-237.
    Lahrech, A., Boucher, C., & Noyer, J. C. (2004). Fusion of GPS and odometer measurements for map-based vehicle navigation. In 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT'04. (Vol. 2, pp. 944-948). IEEE.
    Lashley, M., Bevly, D., & Petovello, M. (2009). What are vector tracking loops, and what are their benefits and drawbacks?. Inside GNSS, 4(3), 16-21.
    Lee, H. K., Rizos, C., & Jee, G. I. (2005). Position domain filtering and range domain filtering for carrier-smoothed-code DGNSS: an analytical comparison. IEE Proceedings-Radar, Sonar and Navigation, 152(4), 271-276.
    Lee, S., Kim, C., Cho, S., Myoungho, S., & Jo, K. (2020). Robust 3-Dimension Point Cloud Mapping in Dynamic Environment Using Point-Wise Static Probability-Based NDT Scan-Matching. IEEE Access, 8, 175563-175575.
    Li, X., Du, S., Li, G., & Li, H. (2020). Integrate Point-Cloud Segmentation with 3D LiDAR Scan-Matching for Mobile Robot Localization and Mapping. Sensors, 20(1), 237.
    Li, Y., Niu, X., Zhang, Q., Zhang, H., & Shi, C. (2012). An in situ hand calibration method using a pseudo-observation scheme for low-end inertial measurement units. Measurement Science and Technology, 23(10), 105104.
    Lu, M., Li, W., Yao, Z., & Cui, X. (2019). Overview of BDS III new signals. Navigation, 66(1), 19-35.
    Magnusson, M., Vaskevicius, N., Stoyanov, T., Pathak, K., & Birk, A. (2015). Beyond points: Evaluating recent 3D scan-matching algorithms. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3631-3637). IEEE.
    Misra, P., & Enge, P. (2006). Global Positioning System: signals, measurements and performance second edition. Global Positioning System: Signals, Measurements And Performance Second Editions, 206.
    Mosavi, M. R., Azad, M. S., & EmamGholipour, I. (2013). Position estimation in single-frequency GPS receivers using Kalman filter with pseudo-range and carrier phase measurements. Wireless personal communications, 72(4), 2563-2576.
    National Highway Traffic Safety Administration. (2017). Federal motor vehicle safety standards; V2V Communications. Federal Register, 82(8), 3854-4019.
    NAVSTAR, G. (1991). Joint Program Office (JPO). GPS NAVETAR USER’S OVERVIEW. YEE-82-009D. GPS JPO.
    Ochieng, W. Y., Quddus, M., & Noland, R. B. (2003). Map-matching in complex urban road networks. Revista Brasileira de Cartografia, 55(2).
    Pan, Y. (2019). Target-less registration of point clouds: A review. arXiv preprint arXiv:1912.12756.
    Papoulias, F. A. (2001). Modern Control Systems. Informal Lecture Notes for ME4811.
    Park, J., Lee, D., & Park, C. (2015). Implementation of vehicle navigation system using GNSS, INS, odometer and barometer. Journal of Positioning, Navigation, and Timing, 4(3), 141-150.
    Parkinson, B. W., Enge, P., Axelrad, P., & Spilker Jr, J. J. (Eds.). (1996). Global positioning system: Theory and applications, Volume II. American Institute of Aeronautics and Astronautics.
    Parviainen, J., Kantola, J., & Collin, J. (2008). Differential barometry in personal navigation. In 2008 IEEE/ION Position, Location and Navigation Symposium (pp. 148-152). IEEE.
    Petovello, M. G. (2003). Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation (p. 0298). Calgary, AB: University of Calgary, Department of Geomatics Engineering.
    Quddus, M. A., Ochieng, W. Y., & Noland, R. B. (2007). Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation research part c: Emerging technologies, 15(5), 312-328.
    Reid, T. G., Houts, S. E., Cammarata, R., Mills, G., Agarwal, S., Vora, A., & Pandey, G. (2019). Localization requirements for autonomous vehicles. arXiv preprint arXiv:1906.01061.
    Reid, T. G., Pervez, N., Ibrahim, U., Houts, S. E., Pandey, G., Alla, N. K., & Hsia, A. (2019). Standalone and RTK GNSS on 30,000 km of North American Highways. arXiv preprint arXiv:1906.08180.
    Rogers, R. M. (2007). Applied mathematics in integrated navigation systems. American Institute of Aeronautics and Astronautics.
    Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247-251.
    Salycheva, A. O., & Cannon, M. E. (2004, January). Kinematic azimuth alignment of INS using GPS velocity information. In Proceedings of NTM 2004 Conference (Session E3), San Diego, CA (pp. 26-28).
    Sato, K., TATESHITA, H., & WAKABAYASHI, Y. (2014). Asia Oceania Multi-GNSS Demonstration Campaign. In XXV FIG Congress. Kuala Lumpur, Malaysia.
    Savage, P. G. (2000). Strapdown analytics (Vol. 2, pp. 15-1). Maple Plain, MN: Strapdown Associates.
    Scherzinger, B. M. (1996, April). Inertial navigator error models for large heading uncertainty. In Proceedings of Position, Location and Navigation Symposium-PLANS'96 (pp. 477-484). IEEE.
    Schuster, F., Keller, C. G., Rapp, M., Haueis, M., & Curio, C. (2016, November). Landmark based radar SLAM using graph optimization. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 2559-2564). IEEE.
    Sefati, M., Daum, M., Sondermann, B., Kreisköther, K. D., & Kampker, A. (2017, June). Improving vehicle localization using semantic and pole-like landmarks. In 2017 IEEE Intelligent Vehicles Symposium (IV) (pp. 13-19). IEEE.
    Seo, J. W., Lee, H. K., Lee, J. G., & Park, C. G. (2006). Lever arm compensation for GPS/INS/odometer integrated system. International Journal of Control, Automation, and Systems, 4(2), 247-254.
    Seo, J., Lee, J. G., & Park, C. G. (2004). Bias suppression of GPS measurement in inertial navigation system vertical channel. In PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No. 04CH37556) (pp. 143-147). IEEE.
    Sharawi, M. S., Akos, D. M., & Aloi, D. N. (2007). GPS C/N0 estimation in the presence of interference and limited quantization levels. IEEE transactions on aerospace and electronic systems, 43(1), 227-238.
    Shimada, H., Yamaguchi, A., Takada, H., & Sato, K. (2015). Implementation and evaluation of local dynamic map in safety driving systems. Journal of Transportation Technologies, 5(02), 102.
    Shin, E. H. (2005). Estimation techniques for low-cost inertial navigation. UCGE report, 20219.
    Soon, B. K., Scheding, S., Lee, H. K., Lee, H. K., & Durrant-Whyte, H. (2008). An approach to aid INS using time-differenced GPS carrier phase (TDCP) measurements. Gps Solutions, 12(4), 261-271.
    Spilker, J. J., & Van Dierendonck, A. J. (2001). Proposed new L5 civil GPS codes. NAVIGATION, Journal of the Institute of Navigation, 48(3), 135-144.
    Stephenson, S. (2016). Automotive applications of high precision GNSS (Doctoral dissertation, University of Nottingham).
    Sukkarieh, S. (2000). Low cost, high integrity, aided inertial navigation systems for autonomous land vehicles.
    Tanigawa, M., Luinge, H., Schipper, L., & Slycke, P. (2008). Drift-free dynamic height sensor using MEMS IMU aided by MEMS pressure sensor. In 2008 5th Workshop on Positioning, Navigation and Communication (pp. 191-196). IEEE.
    Tabibi, S., Nievinski, F. G., van Dam, T., & Monico, J. F. (2015). Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications. Advances in Space Research, 55(4), 1104-1116.
    Teunissen, P. J. G. (1995). The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70, 65-82.
    Teunissen, P. J. (1993). Least-squares estimation of the integer GPS ambiguities. In Invited lecture, section IV theory and methodology, IAG general meeting, Beijing, China.
    Teunissen, P., Joosten, P., & Tiberius, C. (2002). A comparison of TCAR, CIR and LAMBDA GNSS ambiguity resolution. In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2002) (pp. 2799-2808).
    Titterton, D., Weston, J. L., & Weston, J. (2004). Strapdown inertial navigation technology (Vol. 17). IET.
    Torge, W., & Müller, J. (2012). Geodesy. Walter de Gruyter.
    Turetzky, G. & McBurney, P. (2020) A Pure L5 Mobile Receiver. Retrieved from: https://insidegnss.com/a-pure-l5-mobile-receiver/
    Vardhan, H. (2017). HD Maps: New age maps powering autonomous vehicles. Geospatial world.
    Verhagen, S. (2004). Integer ambiguity validation: an open problem?. GPS solutions, 8(1), 36-43.
    Verhagen, S., Li, B., & Geodesy, M. (2012). LAMBDA Software Package: Matlab Implementation. Delft University of Technology.
    Vinande, E., Axelrad, P., & Akos, D. (2009). Mounting-angle estimation for personal navigation devices. IEEE Transactions on Vehicular Technology, 59(3), 1129-1138.
    Walsh, D. (1992). Real time ambiguity resolution while on the move. In Proceedings of the 5th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1992) (pp. 473-481).
    Wan, G., Yang, X., Cai, R., Li, H., Zhou, Y., Wang, H., & Song, S. (2018). Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4670-4677). IEEE.
    Warnant, R., Vyvere, D., Van, L., & Warnant, Q. (2018). Positioning with single and dual frequency smartphones running Android 7 or later. In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018) (pp. 284-303).
    Wieser, A., & Brunner, F. K. (2002). Short static GPS sessions: robust estimation results. GPS solutions, 5(3), 70-79.
    Xiao, Z., Jiang, K., Xie, S., Wen, T., Yu, C., & Yang, D. (2018). Monocular Vehicle Self-localization method based on Compact Semantic Map. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 3083-3090). IEEE.
    Xiao, Z., Yang, D., Wen, T., Jiang, K., & Yan, R. (2020). Monocular Localization with Vector HD Map (MLVHM): A Low-Cost Method for Commercial IVs. Sensors, 20(7), 1870.
    Xu, B., Jia, Q., & Hsu, L. T. (2019). Vector tracking loop-based GNSS NLOS detection and correction: algorithm design and performance analysis. IEEE Transactions on Instrumentation and Measurement.
    Xu, G., & Xu, Y. (2007). GPS. Springer-Verlag Berlin Heidelberg.
    Yang, Y. (2008). Tightly coupled MEMS INS/GPS integration with INS aided receiver tracking loops. Department of Geomatics Engineering.
    Yasuda, A. (2011). Multi-GNSS demonstration campaign in Asia Oceania region. In United Nat. Int. Meeting Appl. Global Navigation Satellite Syst.
    Yen, S. W., van Graas, F., & de Haag, M. U. (2016). Positioning with two satellites and known receiver clock, barometric pressure and radar elevation. GPS solutions, 20(4), 885-899.
    Zhang, J., Edwan, E., Zhou, J., Chai, W., & Loffeld, O. (2012). Performance investigation of barometer aided GPS/MEMS-IMU integration. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium (pp. 598-604). IEEE.
    Zhao, S., Cui, X., Guan, F., & Lu, M. (2014). A Kalman filter-based short baseline RTK algorithm for single-frequency combination of GPS and BDS. Sensors, 14(8), 15415-15433.
    Zhou, Z., & Li, B. (2017). Optimal Doppler-aided smoothing strategy for GNSS navigation. GPS solutions, 21(1), 197-210.
    Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2881-2890).

    無法下載圖示 校內:2024-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE