研究生: |
陳律廷 Chen, Lyu-Ting |
---|---|
論文名稱: |
具粗糙化結構晶種層之黑金/氧化鋅奈米柱異質接面NO2氣體感測器之研究 Investigation of gold black/ZnO nanorod heterojunction NO2 gas sensor with roughness seed layer |
指導教授: |
李欣縈
Lee, Hsin-Ying |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 黑金 、異質接面結構 、二氧化氮氣體感測器 、粗糙化結構 、氧化鋅奈米柱 |
外文關鍵詞: | gold black, heterojunction, NO2 gas sensor, roughness seed layer, ZnO nanorod |
相關次數: | 點閱:82 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以氧化鋅奈米柱為主軸,改變製備奈米柱的各類參數,以尋求較適合應用於製作二氧化氮氣體感測器之氧化鋅奈米柱,最後於氧化鋅奈米柱之上再沉積黑金,以形成p-n異質接面之氣體感測器,以使氣體感測器特性更佳提升。
本研究在石英基板上沉積相互分開的金屬電極,並利用干涉曝光的黃光微影方式成功製作粗糙化結構,並利用磁控式濺鍍系統製作氧化鋅晶種層於其上,接著再以水熱法成長氧化鋅奈米柱,即為本研究的元件雛形。其中針對氧化鋅奈米柱的製程過程,同時改變水熱法前驅物硝酸鋅六水化合物及六亞甲基四胺濃度為15、20及25 mM,水熱法成長時間2、3及4 小時,氧化鋅晶種層厚度20、40及60 nm,粗糙化結構的週期1、2及3 μm,以及氧化鋅奈米柱分別以氮氣600 oC、氮氣400 oC及氫氣400 oC、300 oC、200 oC做退火處理,再以掃描式電子顯微鏡及光致發光頻譜分別研究分析氧化鋅奈米柱的表面形貌及缺陷態對氣體感測器之特性影響。本研究將上述各製程參數最佳化後,分別是前驅物濃度為20 mM、奈米柱成長時間為3小時、晶種層厚度為20 nm、粗糙化結構的週期為2 μm與氫氣退火400 oC,感測器元件對二氧化氮的響應度可達310.6%,操作溫度150 oC。最後將優化的氧化鋅奈米柱元件搭配黑金,成功製作具粗糙化晶種層之黑金/氧化鋅奈米柱異質接面氣體感測器,其響應度可提升至425.5%,相對沒有黑金的元件提高了114.9%,操作溫度為150 oC,其最低可偵測到1 ppm之二氧化氮,且對二氧化氮有良好的選擇性。
In this study, we use interference photolithography, radio frequency magnetron sputtering and simple hydrothermal to fabricate ZnO nanorod with roughness seed layer. In the process, we modulated several parameters like precursor concentration, hexamethylenetetramine (HMT) concentration, synthesis time of hydrothermal, seed layer thickness, interference period, and annealing parameters in order to find an optimal ZnO nanorod for NO2 gas sensor. The parameters of the optimal ZnO nanorod are precursor concentration 20 mM, synthesis time 3 hour, seed layer thickness 20 nm, interference period 2 μm, and annealing in hydrogen at 400 oC. The gas responsivity to 100 ppm NO2 of the optimal ZnO nannorod gas sensor is 310.6%, and the best operating temperature is 150 oC. With the optimizing the ZnO nanorod, we deposited gold black onto it and successfully fabricated the gold black/ZnO nanorod p-n heterojunction gas sensor. The gas responsivity of gold black/ZnO nanorod p-n heterojunction gas sensor can reach 425.5% due to the larger band bending caused by p-n heterojunction. In this research, we analyze the morphology by scanning electron microscope (SEM), defects by photoluminescence (PL).
[1] H. Y. Lee, Y. C. Heish, and C. T. Lee, "High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane," J. Alloy. Compd., vol. 773, pp. 950-954, 2019.
[2] 陳景森, 與陳淨修, "揭開酸雨的神祕面紗──酸雨的成因及對策," 科學月刊, vol. 23, no. 6, 1992.
[3] 物質安全資料表, "二氧化氮(Nitrogen dioxide)," no. 345, p. 4, 2000.
[4] Y. Liu, J. Huang, J. Yang, and S. Wang, "Pt nanoparticles functionalized 3D SnO2 nanoflowers for gas sensor application," Solid-State Electron., vol. 130, pp. 20-27, 2017.
[5] M. W. Ahn, K. S. Park, J. H. Heo, J. G. Park, D. W. Kim, K. J. Choi, J. H. Lee, and S. H. Hong, "Gas sensing properties of defect-controlled ZnO-nanowire gas sensor," Appl. Phys. Lett., vol. 93, no. 26, p. 263103, 2008.
[6] S. Bhatia, N. Verma, and R. Bedi, "Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques," Results Phys., vol. 7, pp. 801-806, 2017.
[7] E. Souteyrand, D. Nicolas, E. Queau, and J. R. Martin, "Influence of surface modifications on semiconductor gas sensor behaviour," Sens. Actuator B-Chem., vol. 26, no. 1, pp. 174-178, 1995.
[8] C. T. Lee, H. Y. Lee, and Y. S. Chiu, "Performance improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3 complex nanoparticle sensing layer," IEEE Sens. J., vol. 16, no. 21, pp. 7581-7585, 2016.
[9] M. Z. Jiao, N. V. Chien, N. V. Duy, N. D. Hoa, N. V. Hieu, K. Hjort, and H. Nguyen, "On-chip hydrothermal growth of ZnO nanorods at low temperature for highly selective NO2 gas sensor," Mater. Lett., vol. 169, pp. 231-235, 2016.
[10] G. J. Sun, J. K. Lee, S. Choi, W. I. Lee, H. W. Kim, and C. Lee, "Selective oxidizing gas sensing and dominant sensing mechanism of n-CaO-decorated n-ZnO nanorod sensors," ACS Appl. Mater. Interfaces, vol. 9, no. 11, pp. 9975-9985, 2017.
[11] M. Hjiri, N. Zahmouli, R. Dhahri, S. Leonardi, L. El Mir, and G. Neri, "Doped-ZnO nanoparticles for selective gas sensors," J. Mater. Sci. Mater. Electron., vol. 28, no. 13, pp. 9667-9674, 2017.
[12] Y. Navale, S. Navale, F. Stadler, N. Ramgir, and V. Patil, "Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors," Ceram. Int., vol. 45, no. 2, pp. 1513-1522, 2019.
[13] D. Bekermann, A. Gasparotto, D. Barreca, C. Maccato, E. Comini, C. Sada, G. Sberveglieri, A. Devi, R. A. Fischer, “Co3O4/ZnO nanocomposites: from plasma synthesis to gas sensing applications,” ACS Appl. Mater. Interfaces, vol. 4, no. 2, pp.928-934, 2012.
[14] B. Mondal, B. Basumatari, J. Das, C. Roychaudhury, H. Saha, and N. Mukherjee, “ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing," Sens. Actuator B-Chem., vol. 194, pp.389-396, 2014.
[15] P. Rodnyi and I. Khodyuk, "Optical and luminescence properties of zinc oxide," Opt. Spectrosc., vol. 111, no. 5, pp. 776-785, 2011.
[16] L. Kumari and W. Li, "Synthesis, structure and optical properties of zinc oxide hexagonal microprisms," Cryst. Res. Technol., vol. 45, no. 3, pp. 311-315, 2010.
[17] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Phys. Rev. B, vol. 76, no. 16, p. 165202, 2007.
[18] S. Vanalakar, M. Gang, V. Patil, T. Dongale, P. Patil, and J. Kim, "Enhanced gas-sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas," J. Electron. Mater., vol. 48, no. 1, pp. 589-595, 2019.
[19] Y. Song, F. Chen, Y. Y. Zhang, S. M. Zhang, F. M. Liu, P. Sun, X. Yan, and G. Y. Lu, "Fabrication of highly sensitive and selective room-temperature nitrogen dioxide sensors based on the ZnO nanoflowers," Sens. Actuator B-Chem., vol. 287, pp. 191-198, 2019.
[20] D. K. Hwang, M. S. Oh, J. H. Lim, and S. J. Park, "ZnO thin films and light-emitting diodes," J. Phys. D-Appl. Phys., vol. 40, no. 22, pp. 387-412, 2007.
[21] K. Liu, M. Sakurai, and M. Aono, "ZnO-based ultraviolet photodetectors," Sensors, vol. 10, no. 9, pp. 8604-8634, 2010.
[22] K. Kandpal and N. Gupta, "Zinc oxide thin film transistors: advances, challenges and future trends," BEEI, Vol. 5, No. 2, pp. 205-212, 2016.
[23] D. Panjwani, M. Yesiltas, J. Nath, D. E. Maukonen, I. Rezadad, E. M. Smith, R. E. Peale, C. Hirschmugl, J. Sedlmair, R. Wehlitz, M. Unger, and G. Boreman, "Patterning of oxide-hardened gold black by photolithography and metal lift-off," Infrared Phys. Technol., vol. 62, pp. 94-99, 2014.
[24] D. McKenzie, "Selective nature of gold-black deposits," J. Opt. Soc. Am. A-Opt. Image Sci. Vis., vol. 66, no. 3, pp. 249-253, 1976.
[25] S. Ilias, P. Topart, C. Larouche, P. Beaupré, D. Gay, C. Proulx, T. Pope, and C. Alain, "Deposition and characterization of gold black coatings for thermal infrared detectors," Photonics North, vol. 7750, p. 77501J, 2010.
[26] T. H. Yeh, S. Y. Chu, H. Y. Lee, and C. T. Lee, "Performance improvement of nitrogen dioxide gas sensors based on novel p-n heterojunction gold black/VOx bi-sensing membranes," Mater. Sci. Semicond. Process. vol. 115, p. 105125, 2020.
[27] J. Wang, "Electrochemical sensing of explosives," Electroynalysis, vol. 19, no. 4, pp. 415-423, 2007.
[28] C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, "Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor," Sens. Actuator B-Chem., vol. 128, no. 1, pp. 320-325, 2007.
[29] S. Lenaerts, J. Roggen, and G. Maes, "FT-IR characterization of tin dioxide gas sensor materials under working conditions," Spectroc. Acta Pt. A-Molec. Biomolec., vol. 51, no. 5, pp. 883-894, 1995.
[30] Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, "ZnO nanowire field-effect transistor and oxygen sensing property," Appl. Phys. Lett., vol. 85, no. 24, pp. 5923-5925, 2004.
[31] P. Shankar and J. B. B. Rayappan, "Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases-a review," Sci. Lett. J., vol. 4, no. 4, p. 126, 2015.
[32] M. Takata, D. Tsubone, and H. Yanagida, "Dependence of electrical conductivity of ZnO on degree of sintering," J. Am. Ceram. Soc., vol. 59, no. 1‐2, pp. 4-8, 1976.
[33] Z. U. Abideen, J. H. Kim, J. H. Lee, J. Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Electrospun metal oxide composite nanofibers gas sensors: a review," J. Korean Ceram. Soc., vol. 54, no. 5, pp. 366-379, 2017.
[34] J. Huang, H. Ren, P. Sun, C. Gu, Y. Sun, and J. Liu, "Facile synthesis of porous ZnO nanowires consisting of ordered nanocrystallites and their enhanced gas-sensing property," Sens. Actuator B-Chem., vol. 188, pp. 249-256, 2013.
[35] M. M. Abdullah, M. H. Suhail, and S. I. Abbas, "Fabrication and testing of SnO2 thin films as a gas sensor," Arch. Appl. Sci. Res., vol. 4, no. 3, pp. 1279-1288, 2012.
[36] J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim, and H. W. Kim, "Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires," Sens. Actuator B-Chem., vol. 274, pp. 356-369, 2018.
[37] S. Park, S. Kim, H. Kheel, and C. Lee, "Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor," Sens. Actuator B-Chem., vol. 222, pp. 1193-1200, 2016.
[38] A. Mirzaei, S. Park, G. J. Sun, H. Kheel, C. Lee, and S. Lee, "Fe2O3/Co3O4 composite nanoparticle ethanol sensor," J. Korean Phys. Soc., vol. 69, no. 3, pp. 373-380, 2016.
[39] 楊雲凱, "物理氣相沉積(PVD)介紹," 國家奈米元件實驗室奈米通訊, vol. 22, no. 4, pp. 33-35, 2015.
[40] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, "Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique," J. Appl. Phys., vol. 108, no. 7, p. 073119, 2010.
[41] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, "ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique," Appl. Phys. Lett., vol. 91, no. 23, p. 231113, 2007.
[42] B. S. Sannakashappanavar, N. A. Pattanashetti, C. Byrareddy, and A. B. Yadav, "Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers," AIP Conference Proceedings, vol. 1943, no. 1, p. 020077, 2018.
[43] M. Breedon, J. Yu, W. Wlodarski, and K. Kalantar-zadeh, "ZnO nanostructured arrays grown from aqueous solutions on different substrates," ICONN, pp. 9-12, 2008.
[44] 謝嘉民, 賴一凡, 林永昌, and 枋志堯, "光激發螢光量測的原理、架構及應用," 科儀新知, no. 146, pp. 39-51, 2005.
[45] 羅聖全, "科學基礎研究之重要利器—掃描式電子顯微鏡(SEM)," 科學研習.vol. 52, no. 5, pp. 4-6, 2013.
[46] M. Kamruzzaman and J. Zapien, "Effect of temperature, time, concentration, annealing, and substrates on ZnO nanorod arrays growth by hydrothermal process on hot plate," Crystallogr. Rep., vol. 63, no. 3, pp. 456-471, 2018.
[47] J. P. Liu1, C. X. Xu, G. P. Zhu, X. Li, Y. P. Cui, Y. Yang and X. W. Sun, "Hydrothermally grown ZnO nanorods on self-source substrate and their field emission," J. Phys. D-Appl. Phys., vol. 40, no. 7, p. 1906, 2007.
[48] A. M. Holi, Z. Zainal, Z. A. Talib, H. N. Lim, C. C. Yap, S. K. Chang, and A. K. Ayal, "Effect of hydrothermal growth time on ZnO nanorod arrays photoelectrode performance," Optik, vol. 127, no. 23, pp. 11111-11118, 2016.
[49] L. Mohd Fudzi, Z. Zainal, H. N. Lim, S. K. Chang, and A. M. Holi, "Effect of temperature and growth time on vertically aligned ZnO nanorods by simplified hydrothermal technique for photoelectrochemical cells," Materials, vol. 11, no. 5, p. 704, 2018.
[50] P. Rattanawarinchai, N. Khemasiri, S. Jessadaluk, C. Chananonnawathorn, M. Horprathum, A. Klamchuen, N. Kayunkid, S. Rahong, D. Phromyothin, J. Nukeaw, “Growth time dependence on photoelectrochemical property of zinc oxide nanorods prepared by hydrothermal synthesis,” Surf. Rev. Lett., vol. 25, p. 1840001, 2018.
[51] X. M. Ren, H. Q. Zhang, L. Z. Hu, J. Y. Ji, Y. Li, J. L. Liu, H. W. Liang, Y. M. Luo, and J. M. Bian, "The effect of growth time on the morphology of ZnO nanorods by hydrothermal method," Adv. Mater. Res., vol. 622-623, pp. 885-859, 2012.
[52] L. W. Ji, S. M. Peng, J. S. Wu, W. S. Shih, C. Z. Wu, and I. T. Tang, "Effect of seed layer on the growth of well-aligned ZnO nanowires," J. Phys. Chem. Solids, vol. 70, no. 10, pp. 1359-1362, 2009.
[53] H. Ghayour, H. Rezaie, S. Mirdamadi, and A. Nourbakhsh, "The effect of seed layer thickness on alignment and morphology of ZnO nanorods," Vacuum, vol. 86, no. 1, pp. 101-105, 2011.
[54] T. S. Tlemcani, C. Justeau, K. Nadaud, G. Poulin-Vittrant, and D. Alquier, "Deposition time and annealing effects of ZnO seed layer on enhancing vertical alignment of piezoelectric ZnO nanowires," Chemosensors, vol. 7, no. 1, p. 7, 2019.
[55] S. Pokai, P. Limnonthakul, M. Horprathum, P. Eiamchai, V. Pattantsetakul, S. Limwichean, N. Nuntawong, S. Porntheeraphat, and C. Chitichotpanya, "Influence of seed layer thickness on well-aligned ZnO nanorods via hydrothermal method," Mater. Today : Proceedings, vol. 4, no. 5, pp. 6336-6341, 2017.
[56] M. Al-Hashem, S. Akbar, and P. Morris, "Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review," Sens. Actuator B-Chem., vol. 301, p. 126845, 2019.
[57] Y. Tu, S. Q. Chen, X. Li, J. Gorbaciova, W. P. Gillin, S. Krause, and J. Briscoe, "Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour," J. Mater. Chem. C, vol. 6, no. 7, pp. 1815-1821, 2018.
[58] G. Kasi, K. Viswanathan, and J. Seo, "Effect of annealing temperature on the morphology and antibacterial activity of Mg-doped zinc oxide nanorods," Ceram. Int., vol. 45, no. 3, pp. 3230-3238, 2019.
[59] A. Khayatian, M. A. Kashi, R. Azimirad, S. Safa, and S. A. Akhtarian, "Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors," Optik, vol. 127, no. 11, pp. 4675-4681, 2016.
[60] C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri, and N. Pinna, "Tin dioxide–carbon heterostructures applied to gas sensing: structure-dependent properties and general sensing mechanism," J. Phys. Chem. C, vol. 117, no. 38, pp. 19729-19739, 2013.
[61] L. Y. Jian, H. Y. Lee, and C. T. Lee, "Enhanced nitrogen dioxide gas-sensing performance using tantalum pentoxide-alloyed indium oxide sensing membrane," IEEE Sens. J., vol. 19, no. 18, pp. 7829-7834, 2019.
[62] M. Kumar, T. N. Bhat, B. Roul, M. K. Rajpalke, A. Kalghatgi, and S. Krupanidhi, "Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE," Mater. Res. Bull., vol. 47, no. 6, pp. 1306-1309, 2012.
[63] S. Vishwakarma, J. Upadhyay, and H. Prasad, "Physical properties of arsenic-doped tin oxide thin films," Thin Solid Films, vol. 176, no. 1, pp. 99-110, 1989.
[64] V. Anand, A. Sakthivelu, K. D. A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, and H. Algarni, "Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics," J. Sol-Gel Sci. Technol., vol. 86, no. 2, pp. 293-304, 2018.