簡易檢索 / 詳目顯示

研究生: 蕭恩柔
Hsiao, En-Jou
論文名稱: 高分子材料微結構製程技術研究與應用
A study on the fabrication for polymer microstructure and its application
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 114
中文關鍵詞: 高分子材料微結構二氧化碳雷射背後曝光導光板神經網路光纖
外文關鍵詞: back side exposure, Polymer microstructure, CO2 laser, optical fiber, neural network
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用背後曝光顯影製程與二氧化碳雷射加工技術,探討其對高分子微結構製程形貌的控制及應用。文中第一個部分主要提出以背後曝光顯影製程,製作不同角度高分子圓錐柱微結構,並應用至LCD導光板,探討背後曝光與曝光劑量對結構角度形貌的變化及出光均齊度影響。第二個部分是以二氧化碳雷射加工微結構,提出以神經網路來預測雷射光刻微結構深度與尺寸的變化,應用在可撓式光纖導光板微結構的製作。藉由本文實驗方法與結果顯示,在第一部分以背後曝光調變曝光劑量從200~1200 mJ/cm2,可製作出70o~5o不同角度圓錐柱結構,與目前商用導光板測試比較,可得較好的出光均齊度;第二部分利用雷射加工可撓性導光板,提出以神經網路方法可精準的預測雷射在不同的參數條件下,光刻微結構深度變化,製作出達80%的高均齊出光亮度微結構面板。透過本文研究預期可應用在光電顯示器導光板高分子微結構製程,以及微機電材料與雷射加工製程的領域上。

    The goal of this research is to develop the microstructure fabrication technology of polymer materials using back side exposure and CO2 laser machining. First, author fabricates the polymer microsture on light guide plate using back exposure method. The effect of exposure dose on luminance of light guide plate is also discussed. Second, the prediction of ablation depth of polymer optical fiber is performed by the neural network. The developed neural network can clearly construct the relationship between process parameters and machined depth. Therefore, laser ablation depth can be predicted using neural network. The variation between the predicted and measured depth is less to 10%. The developed technology can be applied to the field of the LCD display.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 本文架構 5 第二章 文獻回顧 7 2-1 LIGA-Like製程技術 7 2-2 雷射加工高分子材料技術與應用 12 2-3 高分子微結構應用 17 2-3-1 高分子導光板表面微結構 17 2-3-2可撓性高分子光纖微結構 21 第三章 實驗方法與步驟 26 3-1 高分子微結構製程系統介紹 26 3-1-1 黃光微影製程系統設備 26 3-2-2 雷射加工系統介紹與基本原理 32 3-2 實驗量測設備介紹 34 3-2-1 光學顯微鏡 34 3-2-2 表面粗度儀 34 3-2-3共軛焦3D光學表面形貌量測儀 35 第四章 不同角度高分子圓錐柱微結構陣列製作 37 4-1 實施原理與方法 37 4-1-1 實驗流程 38 4-2 曝光劑量對結構變化 39 4-2-1 曝光劑量對結構角度趨勢變化 43 4-2-2 以SEM觀察曝光劑量對結構形貌變化 44 4-2-3 曝光劑量對結構高度與寬度形貌趨勢的變化 45 4-3 顯影濃度調配對結構變化 49 4-4 微結構光學性質檢測 51 第五章 可撓式高分子光纖背光板加工 56 5-1 可撓式高分子光纖材料性質與結構 56 5-2 可撓式高分子光纖實驗流程 59 5-3 可撓式光纖背光板加工 63 5-3-1 不同加工參數對光纖形貌結構的影響 63 5-4 以類神經網路預測雷射加工深度變化 71 5-4-1 誘導式類神經網路介紹 71 5-4-2 網路建構程序 77 5-4-3以誘導式類神經網路建構不同加工深度變化預測模式 80 5-4-4 以神經網路控制雷射加工不同深度變化高分子光纖面板 93 第六章 結論與未來展望 100 6-1 結論 100 6-2 本文貢獻 103 6-3 未來展望 104 參考文獻 105 作者簡歷 113

    [1] R.Delille, M.G.Urdaneta, S.J.Moseley and E.Smela, “Benchtop Polymer MEMS.” Journal of Microelectro Mechanical Systems , 15 (2006) Oct., No. 5,
    [2] 液晶電視大商機, 財訊出版社, 民國95
    [3] 顧宏壽, 光電液晶平面顯示器技術基礎與應用, 文京出版社,民93
    [4] C.H.Chien, Z.P.Chen, “Fabrication of anovel integrated light guiding plate by microelectromechanical systems technique for backlight system.” J.Microlith. Microfab. Microsyst., 5 (2006) Oct-Dec., No.4
    [5] 行政院科學委員會, 微機電系統技術與應用,精密儀器出版,民92
    [6] 莊達仁, VLSI製造技術, 高立出版社, 民國94
    [7] Y.Cheng, C.Y.Lin, D.H. Wei, B.Loechel and G.Gruetzner,“Wall Profile of Thick Photoresist Generated via Contact Printing.” IEEE JOURNAL OF MICROELECTRO MECHANICAL SYSTEMS, Vol. 8 March (1999), No.1
    [8] F.G.Tseng, C.S.Yu, “High aspect ratio ultrathick micro-stencil by JSR THB-430N negative UV photroresist.” Sensors and Actuators, A97-98 (2002), 764-770
    [9] Y.J.Chuang, F.G.Tseng, W.K.Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination.” Microsystem Technologies, 8 (2002), 308–313
    [10] C.G.K.Malek,“SU8 resist for low-cost X-ray patterning of high-resolution high-aspect-ratio MEMS” Microelectronics Journal, 33 (2002) 101-105
    [11] K.Kim, D.S.Park, H.M.Lu, W.Che, K.Kim, J.B.Lee and C.H.Ahn, “A tapered hollow metallic microneedle array using backside exposure of SU-8.” J. Micromech. Microeng, 14 (2004), 597–603
    [12] S.Sugiyama, S.Khumpuang and G.Kawaguchi, “Plain-pattern to cross-section transfer(PCT) technique for deep x-ray lithography and applications.” J. Micromech. Microeng, 14 (2004), 1399–1404
    [13] K.Y.Hung, H.T.Hu and F.G.Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head.” J.Micromech. Microeng, 14 (2004), 975–983
    [14] J.H.Park, M.G.Allen and M.R.Prausnitz, “Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery.” Journal of Controlled Release, 104 (2005), 51–66
    [15] R.Turner, Y.Desta, K.Kelly, J.Zhang, E.Geiger and D.C.Mancini, “Tapered LIGA HARMs.” J.Micromech.Microeng, 13 (2003), 367-372
    [16] R.F.Shyu, H.Yang, “Vacuum suction aid for microlens array formation using LIGA-like process.” Int. J. Adv. Manuf. Technol., 29 (2006), 518–523
    [17] G.J.Wang, Y.F.Hsu, S.H.Hsu and R.H.Horng ,“JSR photolithography based microvessel scaffold fabrication and cell seeding.”, Biomed Microdevices, 8 (2006), 17–23
    [18] J.S.Kuo, K.T.Chiu, S.W.Hsu and P.H.Chen, “A novel technique for the fabrication of herringbone grooves in a dynamic thrust bearing combining UV-LIGA with electro-discharge machining”, Microsyst Technol, 12 (2006), 529-536
    [19] V.S.Rao, V.Kripesh, S.W.Yoon and A.A.O.Tay, “A thick photoresist process for advanced wafer level packaging applications using JSR THB-151N negative tone UV photoresist.” J. Micromech. Microeng, 16 (2006) 1841–1846
    [20] H.Huang, C.Fu, “Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations.” J. Micromech. Microeng, 17 (2007), 393–402
    [21] 丁勝懋, 雷射工程導論, 中央圖書出版社, 民國93
    [22] P.G.Berrie, F.N.Birkett, “The drilling and cutting of polymethy Lmerhacrylate (Perspex) by Co2 laser.” Optics and Lasers in Engineering, 1 (1980), 107-129
    [23] S.Lazare, J.Lopez and F.Weisbuch, “High-aspect-ratio microdrilling in polymericmaterials with intense KrF laser radiation.” Appl. Phys, A 69 [Suppl.] (1999), S1–S6
    [24] Y.Feng, Z.Q.Liu and X.S.Yi, “Co-occurrence of photochemical and thermal effects during laser polymer ablation via a 248-nm excimer laser.” Applied Surface Science, 156(2000), 177–182
    [25] Z.Q.Liu, Y.Feng and X.S.Yi, “Coupling effects of the number of pulses, pulse repetition rate andfluence during laser PMMA ablation.” Applied Surface Science, 165(2000), 303–308
    [26] T.Fourrier, G.Schrems, T.Mühlberger, J.Heitz, N.Arnold, D.Bäuerle , M.Mosbacher, J.Boneberg and P.Leiderer, “Laser cleaning of polymer surfaces.” Appl. Phys, A 72 (2001), 1-6
    [27] F.Weisbuch, V.N.Tokarev, S.Lazare and D.Debarre, “Viscosity of transient melt layer on polimer surface under conditions of KrF laser ablation.” Applied Surface Science, 186 (2002), 95-99
    [28] H.Klank, Jörg P. Kutter and O.Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems.” Lab Chip, 2 (2002), 242–246
    [29] B.Tan, K.Venkatkrishnan, N.R.Sivakumar and G.K.Gan, “Laser drilling of thick material using femtosecond pulse with a focus of dual-frequency beam.” Optics & Laser Technology, 35 (2003), 199-202
    [30] J.Jiang, C.L.Callender, J.P.Noad, R.B.Walker and S.J.Mihailov, “All-Polymer Photonic Devices Using Excimer Laser Micromachining.” IEEE PHOTONICS TECHNOLOGY LETTERS, 16 (2004), NO. 2, FEBRUARY
    [31] K.C.Yung, S.M.Mei and T.M.Yue, “Rapid prototyping of polymer-based MEMS devices using UV YAG laser.” J. Micromech. Microeng, 14 (2004), 1682–1686
    [32] J.Y.Cheng, C.W.Wei, K.H.Hsua and T.H.Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development.” Sensors and Actuators, B 99 (2004), 186–196
    [33] C.K.Chung, Y.C.Lin and G.R.Huang, “Bulge formation and improvement of the polymer in CO2 laser micromachining.” J. Micromech. Microeng, 15 (2005), 1878–1884
    [34] M.F.Jensen, U.Kruhne, L.H.Christensen1 and O.Geschke, “Refractive microlenses produced by excimer laser irradiation of poly (methyl methacrylate).” J. Micromech. Microeng, 15 (2005), 91–97
    [35] F.Caiazzo, F.Curcio and G.Daurelio, F.M.C.Minutolo, “Laser cutting of different polymeric plastics (PE,PPand PC) by a CO2 Laser beam.”, Journal of Materials Processing Technology, 159 (2005), 279-285
    [36] H.W.Kanga, A.J.Welch, “Effect of liquid thickness on laser ablation efficiency.” JOURNAL OF APPLIED PHYSICS, 101 (2007), 083101.
    [37] P.Gordon, B.Balogh and B.Sinkovics, “Thermal simulation of UV laser ablation of polyimide.” Microelectronics Reliability, 47 (2007), 347–353
    [38] D.Yuan, S.Das, “Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO2 laser ablation.” Journal of Applied Physics, 101 (2007), 024901
    [39] Y.Koike, T.Arai, “Surface light source device with polarization function.” (1999), US pattern 5,982,540
    [40] J.S.Choi, J.G.Park, B.S.Moon and K.B.Yoon, “Method for producing Dot-Printless light guide plate for liquid crystal display device using norbornene copolymer.” (2004), US pattern 6,699,409 B2
    [41] Kazuaki, Tsuyoshi, “Surface light source device” (1995), US pattern 5,718,497
    [42] T.Masaki, F.Arakawa, “Directional diffusing film.” (2003),US pattern 6,505,959 B2
    [43] C.Y.Tai, H.Zou, “Backlighting system with a Multi-Reflection light injection system and using microprisms.”(1994), US pattern 5,359,691
    [44] C.H.Liu, G.T.Soung, “Lens-Implanted optical sheet and msthod for manufacturing the same.” (20004), US pattern 6,819,494 B2
    [45] M.S.Kim, “Light Guide plate having visual angle acjustiing member and liquid crystal display apparatus having.”(2004), US pattern 6,836,303 B2
    [46] R.H.Appeldorn, “illumination device and optical fibres for use therein.” (1995), US pattern 5,432,876
    [47] J.M. Myers, “fiber optic backlighting panel and dot process for making same.” (1993), US pattern 5,226,105
    [48] S.S.Kim, J.Y. Son and V. V.Smirnov, “ Back lighting Apparatus of liquid crystal display using optical fiber. ”(2004),US pattern 6,714,185 B2
    [49] S. Miyashita, “Light Guide plate and support unit for the same.” (2004), US pattern 0130912 A1
    [50] Y.H.Kim, S.W.Choi, S.Y.Lee, Y.S.Ha and S.H.An, “ Liquid crystal display apparatus and mobile terminal using same .” (2004), US pattern 6,781,654 B2
    [51] T.Funamoto, A.G.H.Lowe and M.C.Lea, ” illumination device and bulletin board device.” (2001), US pattern 6,247,826, B1
    [52] J.R.Parker, “Fiber optic light emitting panel and Method of making same.” (1989), US pattern 4,885,663
    [53] http://www.lumitex.com/
    [54] http://flexdisplay.asu.edu/
    [55] 洪益智 ,鍾震桂 ,”厚模光阻之微堆疊技術與光學透鏡製作, 國立成功大學機械工程研究所碩士論文, 民國94年
    [56] 南台灣奈米科技中心, 光阻塗佈機儀器操作手冊,
    [57] 南台灣奈米科技中心, 曝光機儀器操作手冊,
    [58] J.C.Ion, “Laser processing of engineering materials” Elserier Butterworth-Heinemann, (2004)
    [59] M.J.Madou, “Fundamental of microfabrication” CRC PRESS,(2002)
    [60] 楊建人, 光學原理, 徐氏文教基金會, 民國92
    [61] 賴耿陽, 蘇品書, 塑膠光纖應用技術, 復漢出版社, 民國77
    [62] 山下真司,光纖通信原理與最新應用技術,建興出版社, 民國93
    [63] 張安華, 光纖通訊與實習, 文京出版社, 民國94
    [64] B.Y.Lee, Y.S.Tarng, “Surface roughness inspection by computer vision in turningoperations.” International Journal of Machine Tools & Manufacture, 41 (2001), 1251–1263
    [65] K.S.Kim, “Value management and common accounting prrformance measures for corporations.” Exper Systems with Applications, 22 (2002), 331-336
    [66] J.C.Lin, “Prediction of Rolling Force and Deformation in Three-Dimensional Cold Rolling by Using the Finite-Element Method and a Neural Network.” Int. J. Adv. Manuf. Technol, 20 (2002), 799-806
    [67] B.Y.Lee, S.F.Yu and H.Juan, “The model of surface roughness inspection by vision system in turning.” Mechatronics, 14 (2004), 129-141
    [68] Y.Y.Lin, S.P.Lo, “Modeling of chemical mechanical polishing process using FEM and abductive network.” Engineering Applications of Artificial Intelligence, 18 (2005) 373-381
    [69] M.K.Tsai, B.Y.Lee and S.F.Yu, “A predicted modelling of tool life of high-speed milling for SKD61 tool steel.” Int. J. Adv. Manuf. Technol, 26 (2005), 711-717
    [70] K.S.Lee, J.C.Lin,“Design of the runner and gating system parameters for a multi-cavity injection mould using FEM and neural network.” Int. J. Adv. Manuf. Technol, 27 (2006), 1089–1096
    [71] S.Y.Lin, F.C.Lin, “Predictions of the minimum relative depth of die cavity and the minimum amount of preforming in the radial extrusion of tubular components.” Computers and Structures, 84 (2006), 503–513
    [72] R.E.A.Aal, “Modeling and forecasting electric daily peak loads using abductive networks.” Electrical Power and Energy Systems, 28 (2006), 133–141
    [73] C.K.Chang, H.S.Lu, “Study on the prediction model of surface roughness for side milling operations.” Int. J. Adv. Manuf. Technol, 29: (2006) 867–878

    下載圖示 校內:2009-07-31公開
    校外:2009-07-31公開
    QR CODE