簡易檢索 / 詳目顯示

研究生: 林子舜
Lin, Tzu-Shun
論文名稱: 氧化鋅系列紫外光檢測器
ZnO-based Ultraviolet Photodetectors
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 奈米柱陣列光電化學氧化法紫外光檢測器低溫氣相冷凝系統氧化鋅系列薄膜
外文關鍵詞: Nanorod array, photoelectrochemical oxidation method, ultraviolet photodetectors, vapor cooling condensation system, ZnO-based thin film.
相關次數: 點閱:167下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用低溫氣相冷凝系統製作一系列的氧化鋅系列薄膜與奈米柱,並成功應用於紫外光檢測器。藉由低溫氣相冷凝系統具有多個蒸鍍源的設計,利用共蒸鍍成長高品質低缺陷之p型、本質以及n型氧化鋅,製作出純氧化鋅材料之p型氧化鋅/i型氧化鋅/n型氧化鋅紫外光檢測器,其在波長為360 nm時具有最高的響應度,能夠有效應用於UV-A波段之紫外光檢測器,在偏壓為-1 V時,其紫外光(360 nm)對可見光的拒斥比為2.82×103,等校雜訊功率以及檢測度分別為1.70×10-10 W以及5.53×1011 cmHz1/2/W。接著以低溫氣相冷凝系統製作主動吸收層為氧化鎂鋅之p型氧化鋅/i型氧化鎂鋅/n型氧化鎂鋅紫外光檢測器元件,其元件在波長為310 nm時有最佳的響應度,適合應用於UV-B波段之紫外光檢測器,在偏壓為-1 V時,其紫外光(310 nm)對可見光的拒斥比為3.60×103,等校雜訊功率以及檢測度分別為9.50×10-12 W以及3.16×1012 cmHz1/2/W。並利用低溫氣相冷凝系統進行氧化鋅與二氧化矽進行共蒸鍍,成功製作出能隙為4.5 eV之氧化矽鋅薄膜,利用其作為元件主動層進行p型氧化鋅/i型氧化矽鋅/n型氧化鋅紫外光檢測器元件,在偏壓為-5 V時,其紫外光(270 nm)對可見光的拒斥比為1.01×104,等校雜訊功率以及檢測度分別為3.54×10-12W以及2.67×1011 cmHz1/2/W,能有效應用於UV-C波段的紫外光檢測器。為了更進一步提升氧化鋅系列紫外光檢測器之特性,利用低溫氣相冷凝系統成長p型、i型以及n型氧化鋅奈米柱製作陣列式氧化鋅奈米柱紫外光檢測器,與其它形式的光檢測器相比,此陣列式奈米柱光檢測器具有高效率增益的優點,但由於奈米柱結構的表面缺陷會降低元件特性,本研究利用光電化學氧化法進行氧化鋅奈米柱表面披覆改善其特性,比較不同處理時間之元件特性,以及對其機制進行探討,在經過光電化學氧化法2分鐘處理元件具有最佳的特性,其檢測度達3.25×1015 cmHz1/2/W。進一步應用氧化鋅系列光檢測器,成功製作了雙波段氧化鋅/氧化鎂鋅紫外光檢測器,該元件由氧化鎂鋅奈米柱光檢測器以及氧化鋅薄膜式光檢測器並聯堆疊而成,藉由兩者吸收層為不同能隙之特性,使其元件在波長為310 nm 以及 360 nm 皆能具有檢測的作用,其響應度在偏壓為-5伏特時,於波長為310 nm以及360 nm分別為196.0 A/W和 0.70 A/W,其元件於310 nm以及360 nm檢測度分別達9.67×1013以及3.41×1011,皆能達到檢測的目的。

    In this dissertation, the Zinc oxide (ZnO)-based thin film and nanorod were deposited using vapor cooling condensation system and successfully applied to ultraviolet (UV) photodetectors. The vapor cooling condensation system with multiple evaporation sources designed to co-evaporate to deposited related p-type ZnO (p-ZnO), intrinsic ZnO (i-ZnO), and n-type ZnO (n-ZnO). The homojunction p-i-n ZnO-based UV photodetectors was deposited using the vapor cooling condensation system. The rejection ratio between the ultraviolet and the visible was 2.82×103 measured at a reverse bias of -1V. The low-frequency noise, which was dominated by the flicker noise, exhibited the noise equivalent power of 1.70×10-10 W and the high detectivity of 5.53×1011 cmHz1/2/W with the illumination wavelength of 360 nm at the reverse bias voltage of -1V. This photodetector can effectively detect the UV-A wavelength. Then, The heterostructured thin films of the solar blind p-ZnO:LiNO3/i-MgZnO/n-MgZnO:In UV photodetectors were deposited using the vapor cooling condensation system. The photodetectors exhibited and absorption cut-off wavelength of 310 nm and did not response in the visible wavelength range. A high rejection ratio of 3.60×103 were measured when a reverse bias voltage of -1 V was applied. The associated photoresponsivity of 0.2 A/W, the noise equivalent power of 9.50×10-12 and the specific detectivity of 3.16×1012 cmHz1/2/W were obtained. This photodetector can effectively detect the UV-B wavelength. The Si doping ZnO (SiZnO) film were deposited by co-thermal ZnO and SiO2. The p-ZnO:LiNO3/i-SiZnO/n-ZnO:In (p-i-n) ZnO-based solar blind photodetectors were deposited by vapor cooling condensation system. The ultraviolet (270 nm)/VIS (420 nm) rejection ratio of 1.01×104 was obtained. The dominant noise was flicker noise. Furthermore, the noise equivalent power of 3.54×10-12 W, and the specific detectivity of 2.67×1011 cmHz1/2/W were obtained, when the photodetectors operated at a reverse bias voltage of −5 V. This photodetector can effectively detect the UV-C wavelength. In order to improve the ZnO-based photodetectors detectivity, the structure of the ZnO-based p-ZnO:LiNO3/i-ZnO/n-ZnO:In nanorod ultraviolet (UV) photodetectors was grown using the vapor cooling condensation system. To study the internal gain mechanisms of the photodetectors, the ZnO-based nanorods were photochemically passivated for different time and operated under various environments to vary the defect density resided on the sidewall surface of the ZnO-based nanorods. The mechanisms of the internal gain, which was attributed to the surface band bending effect of the ZnO-based nanorods induced from the sidewall surface defects and the absorbed oxygen molecules, were thus derived. The specific detectivity of 3.25×1015 cmHz1/2/W was obtained for the ZnO-based nanorod UV photodetectors treated with the photoelectrochemical passivation process for 2 min. To extend wavelength sensing limitation, dual-band ultraviolet photodetectors (UV-PDs) were studied. The dual-band UV-PDs were constructed by stacking MgZnO nanorods on ZnO film. The wide ultraviolet wavelength from 250 nm to 360 nm could be responded by the proposed dual-band UV-PDs. When a reverse bias voltage of -5 V was applied, the responsivity at 310 nm and 360 nm was 196.0 A/W and 0.70 A/W, respectively. The noise equivalent power at 310 nm and 360 nm was 9.81×10-15 W and 2.78×10-12 W, respectively. Furthermore, the detectivity at 310 nm and 360 nm was 9.67×1013 and 3.41×1011 cmHz0.5W-1, respectively.

    Abstract (in Chinese) I Abstract (in English) IV Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Overview of this dissertation 3 References 5 Chapter 2 Theory 12 2.1 The zinc oxide semiconductor 12 2.2 Ultraviolet photodetectors 13 2.3 Low frequency noise of photodetectors 14 2.4 The photoelectrochemical (PEC) method 16 References 18 Chapter 3 Experiment Apparatus 28 3.1 The vapor cooling condensation system 28 3.2 The E-beam evaporation system 30 3.3 UV/Visible/NIR spectrophotometer 30 3.4 Energy dispersive spectrometer 31 3.5 Response measurement system 32 3.6 Low frequency noise measurement system……………………….……....……...32 References 33 Chapter 4 ZnO-based thin film ultraviolet photodetectors 39 4.1 ZnO-based thin film ultraviolet-A homojunction ultraviolet photodetectors 39 4.2 ZnO-based thin film ultraviolet-B photodetectors using MgZnO absorption layer 45 4.3 ZnO-Based thin film ultraviolet-C photodetectors using SiZnO absorption layer 51 References 57 Chapter 5 ZnO-based nanostructure ultraviolet photodetectors 73 5.1 Physical internal gain mechanisms of ZnO-based nanorod ultraviolet photodetectors 73 5.2 Dual-band ultraviolet photodetectors 84 References 91 Chapter 6 Conclusion and future work 107 6.1 Conclusion 107 6.2 Future work 112

    Chapter 1
    [1] L. Sang, M. Liao, and M. Sumiya, “A comprehensive review of semiconductor ultraviolet photodetectors: from thin to one-dimensional nanostructures,” Sensors, 13, 10482 (2013).
    [2] P. Cheong, K. F. Chang, Y. H. Lai, S. K. Ho, I. K. Sou, and K. W. Tam, “A zigbee-based wireless sensor network node for ultraviolet detection of flame,” IEEE Tran. Ind. Electron., 58, 5271 (2011).
    [3] B. Butun, T. Tut, E. Ulker, T. Yelboga, and E. Ozbay, “High-performance visible-blind GaN-based p-i-n photodetectors,” Appl. Phys. Lett., 92, 033507 (2008).
    [4] D. P. Lin, X. J. Lin, and D. C. Perng, “Electrodeposited CuSCN metal-semiconductor-metal high performance deep-ultraviolet photodetector,” Appl. Phys. Lett., 112, 021107 (2018).
    [5] A. Yoshikawa, S. Ushida, K. Nagase, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, “High-performance solar-blind Al0.6Ga0.4N/Al0.5Ga0.5N MSM type photodetector,” Appl. Phys. Lett., 111, 191103 (2017).
    [6] K. Zhang, J. Ding, Z. Lou, R. Chai, M. Zhong, and G. Shen, “Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance,” Nanoscale, 9, 15416 (2017).
    [7] S. Ghose, S. Rahman, L. Hong, J. S. R. Ramirez, H. Jin, K. Park, R. Klie, and R. Droopad, “Growth and characterization of b-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors,” J. Appl. Phys., 122, 095302 (2017).
    [8] J. D. Hwang, C. C. Yang, and C. M. Chu, “MgZnO/ZnO two-dimensional electron gas photodetectors fabricated by radio frequency sputtering,” ACS Appl. Mater. Interfaces, 9, 23904 (2017).
    [9] R. Bhardwaj, P. Sharma, R. Singh, and S. Mukherjee, “Sb-Doped p-MgZnO/n-Si heterojunction UV photodetector fabricated by dual ion beam sputtering,” IEEE Photonics Technol. Lett., 29, 1215 (2017).
    [10] A. Gundimeda, S. Krishna, N. Aggarwal, A. Sharma, N. D. Sharma, K. K. Maurya, S. Husale, and G. Gupta, “Fabrication of non-polar GaN based highly responsive and fast UV photodetector,” Appl. Phys. Lett., 110, 103507 (2017).
    [11] F. X. Liang, D. Y. Zhang, J. Z. Wang, W. Y. Kong, Z. X. Zhang, Y. Wang, and L. B. Luo, “Highly sensitive UVA and violet photodetector based on single-layer graphene-TiO2 heterojunction,” Opt. Express, 24, 25922 (2016).
    [12] M. M. Fan, K. W. Liu, X. Chen, Z. Z. Zhang, B. H. Li, H. F. Zhao, and D. Z. Shen, “Realization of cubic ZnMgO photodetectors for UVB applications,” J. Mater. Chem. C, 3, 313 (2015).
    [13] C. Y. Tsay and P. H. Wu, “Properties of solution-processed MgInZnO semiconductor thin films and photodetectors fabricated at a low temperature using UV-assisted thermal annealing,” Ceram. Int., 43, 11874 (2017).
    [14] M. Rivera, R. Velázquez, A. Aldalbahi, A. F. Zhou, and P. Feng, “High operating temperature and low power consumption boron nitride nanosheets based broadband UV photodetector,” Sci. Rep., 7, 42973 (2017).
    [15] L. Su, H. Chen, X. Xu, and X. Fang, “Novel BeZnO based self-powered dual-color UV photodetector realized via a one-step fabrication method,” Laser Photonics Rev., 11, 1700222 (2017).
    [16] J. L. Zhang, G. Wu, H. Z. Chen, and M. Wang, “New wide-bandgap organic donor and its application in UVB sensors with high responsivity,” Org. Electron., 14, 255 (2013).
    [17] Ü. Özgür, Y. I. Alivov, C. Liu, A. Take, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 041301 (2005).
    [18] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys., 93, 1 (2003).
    [19] L. W. Lai, J. T. Yan, C. H. Chen, L. R. Lou, and C. T. Lee, “Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system,” J. Mater. Res., 24, 2252 (2009).
    [20] G. W. Tomlins, J. L. Routbort, and T. O. Mason, “Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide,” J. Appl. Phys., 87, 117 (2000).
    [21] D. Yan, W. Zhang, J. Cen, E. Stavitski, J. T. Sadowski, E. Vescovo, A. Walter, K. Attenkofer, D. J. Stacchiola, and M. Liu “Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering,” Appl. Phys. Lett., 111, 231901 (2017).
    [22] P. Sharma, R. Bhardwaj, R. Singh, S. Kumar, and S. Mukherjee “Investigation of formation mechanism of Li-P dual-acceptor doped p-type ZnO,” Appl. Phys. Lett., 111, 091604 (2017).
    [23] J. L. Lyons, A. Alkauskas, A. Janotti, and C. G. V. Walle “Deep donor state of the copper acceptor as a source of green luminescence in ZnO,” Appl. Phys. Lett., 111, 042101 (2017).
    [24] Y. M. Hu, J. Y. Li, N. Y. Chen, T. C. Han, and C. C. Yu “Correlation between defect-related photoluminescence emission and anomalous Raman peaks in N-Al co-doped ZnO thin films,” Appl. Phys. Lett., 110, 141903 (2017).
    [25] M. A. Rahman, M. T. Westerhausen, C. Nenstiel, S. Choi, A. Hoffmann, A. Gentle, M. R. Phillips, and C. T. That “Charge state switching of Cu acceptors in ZnO nanorods,” Appl. Phys. Lett., 110, 121907 (2017).
    [26] A. Bera and D. Basak, “Photoluminescence and Photoconductivity of ZnS-Coated ZnO Nanowires,” ACS Appl. Mater. interfaces 2, 408 (2010).
    [27] M. Li, N. Chokshi, R. L. Deleon, G. Tompa, and W. A. Anderson, “Radio frequency sputtered zinc oxide thin films with application to metal–semiconductor–metal photodetectors,” Thin Solid Films, 515, 7357 (2007).
    [28] H. Endo, M. Sugibuchi, K. Takahashi, S. Goto, S. Sugimura, K. Hane, and Y. Kashiwaba, “Schottky ultraviolet photodiode using a ZnO hydrothermally grown single crystal substrate,” Appl. Phys. Lett., 90, 121906 (2007).
    [29] M. Dutta and D. Basak, “p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism,” Appl. Phys. Lett., 92, 212112 (2008).
    [30] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., 25, 348 (2013).
    [31] Z. Chen, B. Li, X. Mo, S. Li, J. Wen, H. Lei, Z. Zhu, G. Yang, P. Gui, F. Yao, and G. Fang “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett., 110, 123504 (2017).
    [32] A. Echresh, C. O. Chey, M. Z. Shoushtari, V. Khranovskyy, O. Nur, and M. Willander “UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process,” J. Alloy. Compd., 632, 165 (2015).
    [33] T. H. Wu, I. C. Cheng, C. C. Hsu, and J. Z. Chen “UV photocurrent responses of ZnO and MgZnO/ZnO processed by atmospheric pressure plasma jets,” J. Alloy. Compd., 628, 68 (2015).
    [34] M. Xi, X. Wang, Y. Zhao, Z. Zhu, and H. Fong “Electrospun ZnO/SiO2 hybrid nanofibrous mat for flexible ultraviolet sensor,” Appl. Phys. Lett., 104, 133102 (2014).
    [35] R. Shabannia “High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods,” Mater. Lett., 214, 254 (2018).
    Chapter 2
    [1] B. S. Kang, H. T. Wnag, F. Ren, S. J. Pearton, T. E. Morey, D. M. Dennis, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, “Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors”, Appl. Phys. Lett., 91, 252103 (2007).
    [2] X. S. Fang, L. F. Hu, C. H. Ye, and L. Zhang, “One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors”, Pure Appl. Chem., 82, 2185 (2010).
    [3] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett., 76, 2011 (2000).
    [4] J. Wu and D. Xue, “Progress of science and technology of ZnO as advanced material,” Sci. Adv. Mater., 3, 127 (2011).
    [5] A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,” Appl. Phy. Lett., 89, 123902 (2006) .
    [6] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, S. J. Park, and S. W. Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution”, Appl. Phys. Lett., 94, 071118 (2009).
    [7] L. W. Lai and C. T. Lee, “Investigation of optical and electrical properties of ZnO thin films”, Mater. Chemi. Phys., 110, 393 (2008).
    [8] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys., 93, 1 (2003).
    [9] Z. Zheng, “Synthesis and optical properties of ZnO nanostructures,” J. Nanoengineering and Nanomanufacturing, 2, 60 (2012).
    [10] J. Wu and D. Xue, “Progress of science and technology of ZnO as advanced material,” Sci. Adv. Mater., 3, 127 (2011).
    [11] Z. Jing, J. Wang, F. Li, L. Tan, Y. Fu, and Q. Li, “Gas sensors based on ZnO nanostructures,” J. Nanoengineering and Nanomanufacturing, 2 133 (2012).
    [12] Z. H. Dai, G. J. Shao, J. M. Hong, J. C. Bao, and J. Shen, “Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor,” Biosen. Bioelectron., 24, 1286 (2009).
    [13] Z. W. Zhao, X. J. Chen, B. K. Tay, J. S. Chen, Z. J. Han, and K. A. Khor, “A novel aerometric biosensor based on ZnO:Co nanoclusters for biosensing glucose,” Biosen. Bioelectron., 23, 135 (2007).
    [14] P. Joshi, S. Chakraborti, P. Chakrabarti, S. P. Singh, Z. A. Ansari, M. Husain, and V. Shanker, “ZnO nanoparticles as an antibacterial agent against E. coli,” Sci. Adv. Mater., 4, 173 (2012).
    [15] A. Umar, M. M. Rahman, S. H. Kim, and Y. B. Hahn, “ZnO nanonails: synthesis and their application as glucose biosensor,” J. Nanosci. Nanotech., 8, 3216 (2008).
    [16] W. I. Park, J. S. Kim, G. C. Yi, M. H. Bae, and H. J. Lee, “Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors”, Appl. Phys. Lett., 85, 5052 (2004).
    [17] C. T. Lee, Y. L. Chiou, and C. S. Lee, “AlGaN/GaN MOS-HEMTs with gate ZnO dielectric layer”, IEEE Electron Device Lett., 31, 1220 (2010).
    [18] R. W. Chuang, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique”, Appl. Phys. Lett., 91, 231113 (2007).
    [19] X. S. Fang, Y. Bando, U. K. Gautam, T. Y. Zhai, H. B. Zeng, X. J. Xu, M. Y. Liao, and D. Golberg, “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors”, Crit. Rev. Solid State Mat. Sci., 34,190 (2009).
    [20] Y. Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, and L. Jin, “ZnO nanorods/Au hybrid nanocomposites for glucose biosensor,” Biosen. Bioelectron., 26, 275 (2010).
    [21] G. N. Dar, A. Umar, S. A. Zaidi, S. Baskoutas, S. H. Kim, M. Abaker, A. Al-Hajry, and S. A. Al-Sayari, “Fabrication of highly sensitive non-enzymatic glucose biosensor based on ZnO nanorods,” Sci. Adv. Mater., 3, 901 (2011).
    [22] M. Dutta and D. Basak, “p-ZnO/n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism,” Appl. Phys. Lett., 92, 212112 (2008).
    [23] Z. Chen, B. Li, X. Mo, S. Li, J. Wen, H. Lei, Z. Zhu, G. Yang, P. Gui, F. Yao, and G. Fang “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett., 110, 123504 (2017).
    [24] H. Y. Lee, L. Y. Jian, H. L. Huang, and C. T. Lee, “High performance three-dimensional double-stacked multiple-nanochannel and quadruple-nanogate ZnO-based fin metal-oxide-semiconductor field-effect transistors”, ECS J. Solid State Sci. Technol., 6, Q157 (2017).
    [25] C. T. Lee, H. Y. Lee, H. L. Huang, and C. Y. Tseng, “High-performance depletion-mode multiple-strip ZnO-based fin field-effect transistors,” IEEE Trans. Electron Devices, 63, 446 (2016).
    [26] D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlind, “Evidence for native-defect donors in n-Type ZnO,” Phys. Rev. Lett. 95, 225502 (2005).
    [27] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodor-opoulou, A. F. Hebard, Y. D. Yark, F. Ren, J. Kim, and L. A. Batner, “Wide bandgap ferromagnetic semiconductors and oxides,” J. Appl. Phys., 93, 1 (2003)
    [28] . L. W. Lai, J. T. Yan, C. H. Chen, L. R. Lou, and C. T. Lee, “Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system,” J. Mater. Res., 24, 2252 (2009).
    [29] H. Asıl, E. Gür, K. C¸ ınar, and C. Coskun, “Electrochemical growth of n-ZnO onto thep-type GaN substrate: p–n heterojunction characteristics,” Appl. Phys. Lett., 94, 253501 (2009)
    [30] C. T. Lee, “Fabrication methods and luminescent properties of ZnO materials for light-emitting diodes,” Materials, 3, 2218 (2010)
    [31] E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, “High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation”, Sens. Actuator B, 141, 239 (2009).
    [32] W. Water and S. E. Chen, “Using ZnO nanorods to enhance sensitivity of liquid sensor”, Sens. Actuators B, 136, 371 (2009).
    [33] X. T. Qiu, R. Tang, S. J. Chen, H. Zhang, W. Pang, and H. Yu, “pH measurements with ZnO based surface acoustic wave resonator”, Electrochem. Commun., 13, 488 (2011).
    [34] Y. Sung Kim and C. H. Park, “Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping,” Phys. Rev. Lett., 102, 6403 (2009).
    [35] P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandez, P. Vilarinho, and R. Martins, “Effect of different dopant elements on the properties of ZnO thin films,” Vacuum, 64, 281 (2002).
    [36] K. Ellmer, A. Klein, and B. Rech, Transparent conductive zinc oxide, Springer Berlin Heidelberg, New York USA, 38 (2008).
    [37] J. R. Bellingham, W. A. Phillips, and W. J. Adkins, “Intrinsic performance limits in transparent conducting oxides,” J. Mater. Sci. Lett., 11, 263 (1992).
    [38] N. Starbov, S. Balabanov, I. Bineva, A. Rachkova, E. Kromov, and K. Starbova, “Al doped ZnO thin films-microstructure, physical and sensor properties,” J. Phys. Conf. Ser., 398, 012019 (2012).
    [39] F. J. Klüpfel, F. J. Schein, M. Lorenz, H. Frenzel, H. von Wenckstern, and M. Grundmann, “Comparison of ZnO-based JFET, MESFET, and MISFET,” IEEE Trans. Electron Devices, 60, 1828 (2013).
    [40] C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys. Rev. B, 66, 073202 (2002).
    [41] S. F. Soares, “Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., 31, 210 (1992).
    [42] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semicaonductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., 40, L505 (2001).
    [43] L. C. Chen, M. S. Fu, and I. L. Huang, “Metal-semiconductor-metal AlN mid-ultraviolet photodetectors grown by magnetron reactive sputtering deposition,” Jpn. J. Appl. Phys., 43, 3353 (2004).
    [44] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, 1926, (1994).
    [45] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., 25, 348 (2013).
    [46] H. Y. Lee, C. T. Lee, and J. T. Yan, “Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes”, Appl. Phys. Lett., 97, 111111, (2010).
    [47] C. T. Lee, Y. S. Chiu, S. C. Ho, and Y. J. Lee, “Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor”, Sensors, 4648 (2011).
    [48] Y. S. Chiu and C. T. Lee, “pH Sensor Investigation of Various-Length Photoelectrochemical Passivated ZnO Nanorod Arrays”, J. Electrochem. Soci., 158, J282 (2011).

    Chapter 3
    [1] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodor-opoulou, A. F. Hebard, Y. D. Yark, F. Ren, J. Kim, and L. A. Batner, “Wide bandgapferromagnetic semiconductors and oxides,” J. Appl. Phys., 93, 1 (2003)
    [2] H. Asıl, E. Gür, K. C¸ ınar, and C. Coskun, “Electrochemical growth of n-ZnO onto thep-type GaN substrate: p–n heterojunction characteristics,” Appl. Phys. Lett., 94, 253501 (2009)
    [3] D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO”, Phys. Rev. Lett., 82, 2552 (1999).
    [4] L. W. Lai, J. T. Yan, C. H. Chen, L. R. Lou, and C. T. Lee, “Nitrogen function of aluminum-nitride codoped ZnO films deposited using cosputter system”, J. Master. Res., 24, 2252 (2009).
    [5] E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, “High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation”, Sens. Actuator B, 141, 239 (2009).
    [6] R. W. Chung, R. X. Wu, L. W. Lai, and C. T. Lee, “ZnO-on-GaN heterojunction light-emitting diode grown by vapor cooling condensation technique”, Appl. Phys. Lett., 91, 231113 (2007).
    [7] H. Y. Lee, S. D. Xia, W. P. Zhang, L. R. Lou, J. T. Yan, and C. T. Lee, “Mechanisms of high quality i-ZnO thin films deposition at low temperature by vapor cooling condensation technique”, J. Appl. Phys., 108, 073119 (2010).
    [8] C. H. Chen and C. T. Lee, “Solar blind ultraviolet photodetectors with high dynamic resistance using Zn3Ta2O5 layer,” IEEE Photon. Technol. Lett., 27, 1817 (2015).
    [9] C. H. Chen and C. T. Lee, “Enhancing the performance of ZnO nanorod/p-GaN heterostructured photodetectors using the photoelectrochemical oxidation passivation method”, IEEE Trans. Nanotechnol., 12, 578 (2013).
    [10] C. T. Lee, Y. S. Chiu, S. C. Ho, and Y. J. Lee, “Investigation of a photoelectrochemical passivated ZnO-based glucose biosensor”, Sensors, 11, 4648 (2011).

    Chapter 4
    [1] M. Dutta and D. Basak, “p-ZnO∕n-Si heterojunction: Sol-gel fabrication, photoresponse properties, and transport mechanism”, Appl. Phys. Lett., 92, 212112 (2008).
    [2] D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlind, “Evidence for Native-Defect Donors in n-Type ZnO”, Phys. Rev. Lett., 95, 225502 (2005).
    [3] C. X. Shan, J. Y. Zhang, B. Yao, D. Z. Shen, X. W. Fan, and K. L. Choy, “Ultraviolet photodetector fabricated from atomic-layer-deposited ZnO films”, J. Vac. Sci. Technol. B, 27, 1765 (2009).
    [4] Y. N. Hou, Z. X. Mei, H. L. Liang, D. Q. Ye, S. Liang, C. Z. Gu, and X. L. Du, “Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain”, Appl. Phys. Lett., 98, 263501 (2011).
    [5] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm”, Science 325, 1665 (2009).
    [6] X. Liu, L. Gu, Q. Zhang, J. Wu, Y. Long, and Z. Fan, “All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity”, Nat. Commun., 5, 4007 (2014).
    [7] W. C. Lai, J. T. Chen, and Y. Y. Yang, “Optoelectrical and low-frequency noise characteristics of flexible ZnO-SiO2 photodetectors with organosilicon buffer layer” Opt. Express, 21, 9643 (2013).

    Chapter 5
    [1] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., 25, 348 (2013).
    [2] W. K. Hong, G. Jo, S. S. Kwon, S. Song, and T. Lee, “Electrical properties of surface-tailored ZnO nanowire field-effect transistors,” IEEE Trans. Electron Devices, 55, 3020 (2008).
    [3] H. Y. Lee, C. T. Lee, and J. T. Yan, “Emission mechanisms of passivated single n-ZnO:In/i-ZnO/p-GaN-heterostructured nanorod light-emitting diodes,” Appl. Phys. Lett., 97, 111111 (2010).
    [4] Y. S. Chiu, C. Y. Tseng, and C. T. Lee, “Nanostructured EGFET pH sensors with surface-passivated ZnO thin-film and nanorod array,” IEEE Sensors J., 12, 930 (2012).
    [5] C. Soci, A. Zhang, B. Xiang, D. P. R. Aplin, J. Park, X. Y. Bao,Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., 7, 1003 (2007).
    [6] H. Y. Lee, H. L. Huang, and C. T. Lee, “Investigation of single n-ZnO/i-ZnO/p-GaN-heterostructed nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., 23, 706 (2011).

    無法下載圖示 校內:2023-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE