| 研究生: |
陳富琪 Chen, Fu-Chi |
|---|---|
| 論文名稱: |
利用CRISPR/Cas9系統建立磷脂醯絲胺酸受體基因剔除之斑馬魚來觀察神經系統早期之發育 Established phosphatidylserine receptor gene knockout zebrafish by CRISPR/Cas9 system for observing nervous system development at the early embryonic stage |
| 指導教授: |
洪健睿
Hong, Jiann-Ruey |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 磷脂醯絲胺酸受體 、斑馬魚 、胚胎發育 、次世代定序 、神經生物學 |
| 外文關鍵詞: | phosphatidylserine receptor, zebrafish, embryonic development, NGS, nervous system |
| 相關次數: | 點閱:155 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞凋亡在胚胎成長及生理扮演著相當重要的角色,細胞凋亡能夠清除不必要或不正常且無法恢復的細胞,細胞凋亡後會產生凋亡小體由磷脂醯絲胺酸受體(PSR)清除。PSR是一種位於巨噬細胞上用於辨認凋亡細胞來進行吞噬的受體,細胞進行細胞凋亡時位於膜內側的磷脂醯絲胺酸(PS)會翻轉到膜外。
先前研究發現PSR缺陷的斑馬魚胚胎早期發育出現凋亡細胞堆積在體節的情形,並在24小時腦部、眼睛、心臟及體節發育不正常的情形,且利用NGS確定PSR能夠藉由調控凋亡小體來克服氧化壓力進而能讓細胞自噬系統正常運作使中腦以及後腦能正常發育,也確認其與神經可能有進一步的關係。本實驗利用CRISPR/Cas9系統建立PSR剔除魚隻,分析次世代定序(Next Generation Sequencing, NGS)結果發現在神經發育的相關基因都有明顯的改變,並且透過Tg(HuC: EGFP) 轉殖基因魚隻觀察其神經相關基因的表現,在72小時發現斑馬魚胚胎其腦部神經元細胞有訊號減弱的情形產生,同時觀察前中後腦的長度以及腦部面積都有減少的情形,進而利用RT-qPCR觀察其神經發育相關基因表現量與次世代定序結果一致,最後進一步觀察5天大斑馬魚幼魚泳動能力,由結果得知不論是泳動距離、泳動速度以及最大加速度都有受到影響,皆在PSR剔除後下降。綜合結果表示磷脂醯絲胺酸受體缺失會造成神經發育以及運動能力的影響。
Zebrafish is a model system to research the developmental biology of the vertebrate. Researchers have shown that zebrafish and humans have very similar pathological characteristics, so they can be used as animal models for human disease.
Apoptosis is a planned death, which plays an important role in embryo growth and physiological maintenance. Apoptosis can eliminate unnecessary or abnormal and unrecoverable cells. Apoptotic bodies are cleared by the phosphatidylserine receptor (PSR) after apoptosis. Phospholipid serine receptor is a receptor located on macrophages that is used to identify apoptotic cells for phagocytosis. Phospholipid serine (PS) located on the inner side of the membrane will flip out of the membrane when the cells undergo apoptosis. Previous studies have shown that in mouse embryos deficient in phospholipid serine receptors, abnormal development of the brain, eyes, and heart was found.
Previous research had found that the early development of phospholipid serine receptor-deficient zebrafish embryos showed that apoptotic cells accumulated in the somite. And it was found that the phospholipid serine receptor knockout zebrafish at 8 hpf Embryo development is retarded and the concentration of oxygen-active molecules increases, and the brain, eyes, heart, and somite develop abnormally within 24 hpf. And NGS is used to determine that phospholipid serine receptors can be overcome by regulating apoptotic bodies Oxidative stress in turn allows the normal operation of the autophagy system and the normal development of the midbrain and hindbrain, which also confirms that it may have a further relationship with nerves.
Therefore, this experiment establishes the phosphatidylserine receptor gene knock out zebrafish by CRISPR/Cas9 system, analyzes the results of Next Generation Sequencing (NGS), and observes only the expression of nervous system genes through Tg (HuC: EGFP) transgenic fish. As result, some of the nervous genes illustrate downregulation after PSR gene knockout. The transgenic fish Tg (HuC: EGFP) showed that the forebrain, midbrain, and hindbrain area and the fluorescent intensity all reduce after PSR gene knockout. In summary, PSR plays an important role in the early development of the zebrafish nervous system.
白世中,證明磷脂醯絲胺酸受體基因能經由調控氧活性分子信號及細胞自噬作用來調節斑馬魚腦部發育,國立成功大學生物科技與產業科學系碩士論文,2021。
白植友,斑馬魚磷脂醯絲胺酸受器啟動子之選殖與功能分析,國立成功大學生物科技研究所碩士論文,2007。
唐婉倫,利用 CRISPR/Cas9 系統建立斑馬魚磷脂醯絲胺酸受體及 Bad 基因剔除魚隻及其胚胎發育功能分析,國立成功大學生物科技研究所碩士論文,2017。
黃冠榮,斑馬魚磷脂醯絲胺酸受器於骨骼發育過程中的影響,國立成功大學生物科技研究所碩士論文,2009。
黃培軒,探討斑馬魚之磷脂醯絲胺酸受器其吞噬死亡細胞能力與否對早期胚胎發育之影響,國立成功大學生物科技研究所碩士論文,2015。
Alexander, G.E. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in Clinical Neuroscience 6, 259-280, 2022.
Almeida, R.G., Czopka, T., Ffrench Constant, C., and Lyons, D.A. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138, 4443-4450, 2011.
Artuso, L., Romano, A., Verri, T., Domenichini, A., Argenton, F., Santorelli, F.M., and Petruzzella, V. Mitochondrial DNA metabolism in early development of zebrafish (Danio rerio). Biochimica et Biophysica Acta (BBA)-Bioenergetics 1817, 1002-1011, 2012.
Arulmozhivarman, G., Kräter, M., Wobus, M., Friedrichs, J., Bejestani, E.P., Müller, K., Lambert, K., Alexopoulou, D., Dahl, A., and Stöter, M. Zebrafish in-vivo screening for compounds amplifying hematopoietic stem and progenitor cells:-preclinical validation in human CD34+ stem and progenitor cells. Scientific Reports 7, 1-15, 2017.
Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes and Development 17, 126-140, 2003.
Böse, J., Gruber, A.D., Helming, L., Schiebe, S., Wegener, I., Hafner, M., Beales, M., Köntgen, F., and Lengeling, A. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal. Journal of Biology 3, 1-18, 2004.
Balciunas, D., and Ronne, H. Evidence of domain swapping within the jumonji family of transcription factors. Trends in Biochemical Sciences 25, 274-276, 2000.
Barlow, B.K., Cory Slechta, D.A., Richfield, E.K., and Thiruchelvam, M. The gestational environment and Parkinson's disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reproductive Toxicology 23, 457-470, 2007.
Boeckel, J.N., Guarani, V., Koyanagi, M., Roexe, T., Lengeling, A., Schermuly, R.T., Gellert, P., Braun, T., Zeiher, A., and Dimmeler, S. Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1. Proceedings of the National Academy of Sciences of the United States of America 108, 3276-3281, 2011.
Boldin, M.P., Goncharov, T.M., Goltseve, Y.V., and Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1-and TNF receptor-induced cell death. Cell 85, 803-815, 1996.
Bretscher, M.S. Asymmetrical lipid bilayer structure for biological membranes. Nature New Biology 236, 11-12, 1972a.
Bretscher, M.S. Phosphatidyl-ethanolamine: differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent. Journal of Molecular Biology 71, 523-528, 1972b.
Cabezas-Sainz, P., Guerra-Varela, J., Carreira, M.J., Mariscal, J., Roel, M., Rubiolo, J.A., Sciara, A.A., Abal, M., Botana, L.M., López, R., and Sánchez, L. Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool. BioMed Central Cancer 18, 3, 2018.
Chang, B., Chen, Y., Zhao, Y., and Bruick, R.K. JMJD6 is a histone arginine demethylase. Science 318, 444-447, 2007.
Cikala, M., Alexandrova, O., David, C.N., Pröschel, M., Stiening, B., Cramer, P., and Böttger, A. The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe (II) dependent oxygenase activity. BioMed Central Cell Biology 5, 1-10, 2004.
Clissold, P.M., and Ponting, C.P. JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β. Trends in Biochemical Sciences 26, 7-9, 2001.
Cohen, J.J., Duke, R.C., Fadok, V.A., and Sellins, K.S. Apoptosis and programmed cell death in immunity. Annual Review of Immunology 10, 267-293, 1992.
Cui, P., Qin, B., Liu, N., Pan, G., and Pei, D. Nuclear localization of the phosphatidylserine receptor protein via multiple nuclear localization signals. Experimental Cell Research 293, 154-163, 2004.
Dunn, E.M., Billquist, E.J., VanderStoep, A.L., Bax, P.G., Westrate, L.M., McLellan, L.K., Peterson, S.C., MacKeigan, J.P., and Putzke, A.P. Dual roles of fer kinase are required for proper hematopoiesis and vascular endothelium organization during zebrafish development. Biology 6, 40, 2017.
Fadok, V., Savill, J., Haslett, C., Bratton, D., Doherty, D., Campbell, P., and Henson, P. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. The Journal of Immunology 149, 4029-4035, 1992a.
Fadok, V.A., Bratton, D.L., Frasch, S.C., Warner, M.L., and Henson, P.M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death and Differentiation 5, 551-562, 1998.
Fadok, V.A., and Henson, P.M. Apoptosis: getting rid of the bodies. Current Biology 8, R693-R695, 1998.
Fadok, V.A., Voelker, D., Campbell, P., Cohen, J., Bratton, D., and Henson, P. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. The Journal of Immunology 148, 2207-2216, 1992b.
Flekna, G., Schneeweiss, W., Smulders, F.J., Wagner, M., and Hein, I. Real-time PCR method with statistical analysis to compare the potential of DNA isolation methods to remove PCR inhibitors from samples for diagnostic PCR. Molecular and Cellular Probes 21, 282-287, 2007.
Ganz, J., and Brand, M. Adult neurogenesis in fish. Cold Spring Harbor Perspectives in Biology 8, a019018, 2016.
Goedert, M., and Spillantini, M.G. A century of Alzheimer's disease. Science 314, 777-781, 2006.
Hague, S., Klaffke, S., and Bandmann, O. Neurodegenerative disorders: Parkinson’s disease and Huntington’s disease. Journal of Neurology, Neurosurgery and Psychiatry 76, 1058-1063, 2005.
Hong, E., Jayachandran, P., and Brewster, R. The polarity protein Pard3 is required for centrosome positioning during neurulation. Developmental biology 341, 335-345, 2010a.
Hong, J.R., Lin, G.H., Lin, C.J.F., Wang, W.p., Lee, C.C., Lin, T.L., and Wu, J.L. Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish. Development 131, 5417-5427, 2004.
Hong, X., Zang, J., White, J., Wang, C., Pan, C.H., Zhao, R., Murphy, R.C., Dai, S., Henson, P., and Kappler, J.W. Interaction of JMJD6 with single-stranded RNA. Proceedings of the National Academy of Sciences of the United States of America 107, 14568-14572, 2010b.
Horton, J.R., Engstrom, A., Zoeller, E.L., Liu, X., Shanks, J.R., Zhang, X., Johns, M.A., Vertino, P.M., Fu, H., and Cheng, X. Characterization of a linked Jumonji domain of the KDM5/JARID1 family of histone H3 lysine 4 demethylases. Journal of Biological Chemistry 291, 2631-2646, 2016.
Inohara, N., and Nunez, G. Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death and Differentiation 7, 509-510, 2000.
Kaslin, J., and Brand, M. Cerebellar development and neurogenesis in zebrafish. Handbook of the Cerebellum and Cerebellar Disorders 1, 1441-1462, 2013.
Khachaturian, Z.S. Diagnosis of Alzheimer's disease. Archives of Neurology 42, 1097-1105, 1985.
Kim, C.H., Ueshima, E., Muraoka, O., Tanaka, H., Yeo, S.Y., Huh, T.L., and Miki, N. Zebrafish elav/HuC homologue as a very early neuronal marker. Neuroscience Letters 216, 109-112, 1996.
Kim, H.Y., Huang, B.X., and Spector, A.A. Phosphatidylserine in the brain: metabolism and function. Progress in Lipid Research 56, 1-18, 2014.
Krieser, R.J., Moore, F.E., Dresnek, D., Pellock, B.J., Patel, R., Huang, A., Brachmann, C., and White, K. The Drosophila homolog of the putative phosphatidylserine receptor functions to inhibit apoptosis. Development 134, 2407-2414, 2007.
Kunisaki, Y., Masuko, S., Noda, M., Inayoshi, A., Sanui, T., Harada, M., Sasazuki, T., and Fukui, Y. Defective fetal liver erythropoiesis and T lymphopoiesis in mice lacking the phosphatidylserine receptor. Blood 103, 3362-3364, 2004.
Lall, D., Lorenzini, I., Mota, T.A., Bell, S., Mahan, T.E., Ulrich, J.D., Davtyan, H., Rexach, J.E., Muhammad, A.G., and Shelest, O. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 109, 2275-2291. e2278, 2021.
Lauber, K., Ernst, A., Orth, M., Herrmann, M., and Belka, C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Frontiers in Oncology 2, 116, 2012.
Lavrik, I., Golks, A., and Krammer, P.H. Death receptor signaling. Journal of Cell Science 118, 265-267, 2005a.
Lavrik, I.N., Golks, A., and Krammer, P.H. Caspases: pharmacological manipulation of cell death. The Journal of Clinical Investigation 115, 2665-2672, 2005b.
Lee, J.G., Cho, H.J., Jeong, Y.M., and Lee, J.S. Genetic approaches using zebrafish to study the microbiota-gut-brain axis in neurological disorders. Cells 10, 566, 2021.
Li, M., Zhao, L., Page-McCaw, P.S., and Chen, W. Zebrafish genome engineering using the CRISPR-Cas9 system. Trends in Genetics 32, 815-827, 2016.
Li, M.O., Sarkisian, M.R., Mehal, W.Z., Rakic, P., and Flavell, R.A. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302, 1560-1563, 2003.
Mantri, M., Krojer, T., Bagg, E.A., Webby, C.J., Butler, D.S., Kochan, G., Kavanagh, K.L., Oppermann, U., McDonough, M.A., and Schofield, C.J. Crystal structure of the 2-oxoglutarate-and Fe (II)-dependent lysyl hydroxylase JMJD6. Journal of Molecular Biology 401, 211-222, 2010.
Martin, J.B. Molecular basis of the neurodegenerative disorders. New England Journal of Medicine 340, 1970-1980, 1999.
Meyer, A., Biermann, C.H., and Orti, G. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proceedings of the Royal Society of London Series B: Biological Sciences 252, 231-236, 1993.
Miklósi, Á., and Andrew, R.J. The zebrafish as a model for behavioral studies. Zebrafish 3, 227-234, 2006.
Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., and Gentz, R. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817-827, 1996.
Nagarajan, B., Harder, A., Japp, A., Häberlein, F., Mingardo, E., Kleinert, H., Yilmaz, Ö., Zoons, A., Rau, B., and Christ, A. CNS myelin protein 36K regulates oligodendrocyte differentiation through Notch. Glia 68, 509-527, 2020.
Okano, H.J., and Darnell, R.B. A hierarchy of Hu RNA binding proteins in developing and adult neurons. Journal of Neuroscience 17, 3024-3037, 1997.
Oliveira, d.C.V., Ganz, J., Hans, S., Kaslin, J., and Brand, M. Notch receptor expression in neurogenic regions of the adult zebrafish brain. PLoS One 8, e73384, 2013.
Ravichandran, K.S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. Journal of Experimental Medicine 207, 1807-1817, 2010.
Reddien, P.W., and Horvitz, H.R. The engulfment process of programmed cell death in Caenorhabditis elegans. Annual Review of Cell and Developmental Biology 20, 193-221, 2004.
Rieskamp, J.D., Denninger, J.K., and Dause, T.J. Identifying the unique role of Notch3 in adult neural stem cell maintenance. Journal of Neuroscience 38, 3157-3159, 2018.
Sasai, Y. Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21, 455-458, 1998.
Savill, J., and Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784-788, 2000.
Schmidt, R., Strähle, U., and Scholpp, S. Neurogenesis in zebrafish-from embryo to adult. Neural Development 8, 1-13, 2013.
Seth, A., Stemple, D.L., and Barroso, I. The emerging use of zebrafish to model metabolic disease. Disease Models and Mechanisms 6, 1080-1088, 2013.
Shah, A.N., Davey, C.F., Whitebirch, A.C., Miller, A.C., and Moens, C.B. Rapid reverse genetic screening using CRISPR in zebrafish. Nature Methods 12, 535-540, 2015.
Streit, A., Berliner, A.J., Papanayotou, C., Sirulnik, A., and Stern, C.D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74-78, 2000.
Streit, A., Sockanathan, S., Pérez, L., Rex, M., Scotting, P.J., Sharpe, P.T., Lovell-Badge, R., and Stern, C.D. Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox-2. Development 124, 1191-1202, 1997.
Trapp, B.D., and Nave, K.A. Multiple sclerosis: an immune or neurodegenerative disorder? Annual Review of Neuroscience 31, 247-269, 2008.
Upadhyay, A., Joshi, V., Amanullah, A., Mishra, R., Arora, N., Prasad, A., and Mishra, A. E3 ubiquitin ligases neurobiological mechanisms: development to degeneration. Frontiers in Molecular Neuroscience 10, 151, 2017.
Vanwalleghem, G.C., Ahrens, M.B., and Scott, E.K. Integrative whole-brain neuroscience in larval zebrafish. Current Opinion in Neurobiology 50, 136-145, 2018.
Vaz, R., Hofmeister, W., and Lindstrand, A. Zebrafish models of neurodevelopmental disorders: limitations and benefits of current tools and techniques. International Journal of Molecular Sciences 20, 1296, 2019.
Wallach, D., Varfolomeev, E., Malinin, N., Goltsev, Y.V., Kovalenko, A., and Boldin, M. Tumor necrosis factor receptor and Fas signaling mechanisms. Annual Review of Immunology 17, 331-367, 1999.
Wang, X.C., Wu, Y.C., Fadok, V.A., Lee, M.C., Gengyo Ando, K., Cheng, L.C., Ledwich, D., Hsu, P.K., Chen, J.Y., and Chou, B.K. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302, 1563-1566, 2003.
Webby, C.J., Wolf, A., Gromak, N., Dreger, M., Kramer, H., Kessler, B., Nielsen, M.L., Schmitz, C., Butler, D.S., and Yates III, J.R. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325, 90-93, 2009.
Wenk, G.L. Neuropathologic changes in Alzheimer's disease. Journal of Clinical Psychiatry 64, 7-10, 2003.
Williams, L.E., Detter, C., Barry, K., Lapidus, A., and Summers, A.O. Facile recovery of individual high-molecular-weight, low-copy-number natural plasmids for genomic sequencing. Applied and Environmental Microbiology 72, 4899-4906, 2006.
Wilson, S., Rydström, A., Trimborn, T., Willert, K., Nusse, R., Jessell, T.M., and Edlund, T. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411, 325-330, 2001.
Yabu, T., Kishi, S., Okazaki, T., and Yamashita, M. Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. Biochemical Journal 360, 39-47, 2001.
Yamashita, M. Apoptosis in zebrafish development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136, 731-742, 2003.
Zhang, R.W., and Du, J.L. In vivo whole-cell patch-clamp recording in the zebrafish brain. Zebrafish 1451, 281-291, 2016.
校內:2026-09-20公開