簡易檢索 / 詳目顯示

研究生: 盧聖中
Lu, Sheng-Chung
論文名稱: 以掃描式近場光學顯微術量測奈米金屬狹縫穿透光行為
Transmission light behavior from nano-metal-slits measured by scanning near-field optical microscope
指導教授: 徐旭政
Hsu, Hsu-Cheng
謝文峰
Hsieh, Wen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 81
中文關鍵詞: 表面電漿近場掃描式光學顯微鏡金屬奈米狹縫
外文關鍵詞: Surface plasmon polaritons, Near-field scanning optical microscope, metal-nano-slits
相關次數: 點閱:135下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以掃描式近場光學顯微鏡(Near-Field Scanning Optical Microscope, NSOM)探討光穿透金屬奈米狹縫的行為。藉著量測在不同穿透距離下的二維穿透強度分佈,我們分析穿透光束的強度、半高寬及截面強度。我們在TM偏振入射時,光經過金屬奈米狹縫結構後,在適當距離內會形成不發散的平行光。然而,以TE偏振入射時,其出射光很明顯的有發散現象,此結果證明表面電漿扮演重要的角色。將NSOM影像與SEM影像比對分析,我們研究狹縫裡殘留的蝕刻殘餘物對於穿透光的影響。最後,我們量測了不同長度的奈米狹縫結構,來探討狹縫長度對於穿透光特性的影響。

    We present transmission light behaviors from nano-metal-slits by near-field scanning optical microscope (NSOM). By measuring the contour intensity distributions at different transmission distance, we obtain the integrated intensity, full width at half maximum (FWHM) of transmitted light. When a TM-polarized light at 440nm is normally incident to the nano-metal-slits, a perfectly collimated beam without divergence can be generated at an appropriate distance after the metal-nano-slits.
    In contrast, the transmission light will diverge obviously when TE-polarized light incidence. It can be demonstrated that the surface plasmon plays an important role. We also investigate the effects of etching residues existing in the slits by comparing the NSOM and SEM results. Finally, we measure the different lengths of the nano-metal-slits, and explore the impact of the slits length for the transmittance on the optical beams.

    摘要 i Abstract ii 致謝 iii 章節目錄 iv 圖目錄 vii 表目錄 x 第一章 簡介 1.1 前言 1 1.1.1 光學微影 1 1.2 文獻回顧 2 1.3 實驗動機 5 第二章 實驗理論 2.1 漸逝場特性 6 2.2 表面電漿波 9 2.2.1 TM極化 10 2.2.2 TE極化 11 2.2.3 色散關係曲線 12 2.3 表面電漿耦合方式 13 2.4 異常穿透與指向性現象 15 2.4.1 古典繞射理論 15 2.4.2 異常穿透現象 17 2.4.3 指向性現象 20 第三章 近場光學顯微術 3.1 遠場光學繞射極限 22 3.2 近場光學發展歷史 24 3.2.1 突破繞射極限 24 3.2.2 掃描式電子穿隧顯微鏡 27 3.3 原子力顯微鏡 28 3.3.1 原子力顯微鏡的工作模式 29 3.4 近場掃描式光學顯微鏡 32 3.4.1 光纖探針 34 3.4.2 側向剪應力回饋機制 35 3.4.3 NSOM工作模式 37 第四章 模擬與量測實驗架構 4.1 金屬狹縫結構與模擬 39 4.1.1 模擬情形 40 4.2 實驗架構 42 4.2.1 掃描模式 48 4.2.2 NSOM量測測試 49 第五章 數據與討論 5.1 金屬奈米狹縫10μm-(1) (c2Al440-24-20120209-1) 50 5.1.1 金屬奈米狹縫10μm-(1)製程與SEM影像 50 5.1.2 金屬奈米狹縫10μm-(1)穿透光NSOM影像(TM mode) 52 5.1.3 金屬奈米狹縫10μm-(1)穿透光NSOM影像(TE mode) 56 5.2 金屬奈米狹縫10μm-(2) (c2Al440-24-20120317-2) 59 5.2.1 金屬奈米狹縫10μm-(2) SEM影像 59 5.2.2 金屬奈米狹縫10μm-(2)穿透光NSOM影像(TM mode) 60 5.2.3 金屬奈米狹縫10μm-(2)穿透光NSOM影像(TE mode) 65 5.3 金屬奈米狹縫20μm (c2Al440-24-20120506-3) 67 5.3.1 金屬奈米狹縫20μm SEM影像 67 5.3.2 金屬奈米狹縫20μm穿透光NSOM影像(TM mode) 68 5.3.3 金屬奈米狹縫20μm穿透光NSOM影像(TE mode) 73 第六章 結論與展望 76 參考文獻 78

    [1]R. R. Schaller, “Moore’s law: past,present and future” IEEE Xplore, 34, 52-59, (1997).
    [2]A. K. K. Wong, “Resolution enhancement techniques in optical lithography” (2001).
    [3]J. R. Reitz, F. J. Milford, R. W. Christy, “Foundations of electromagnetic theory” 4th ed , (2009).
    [4]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through” Nature, 391, 12 February (1998).
    [5]H. A. Bethe, “Theory of diffraction by small holes” Phys. Rev, 66, 163, (1944).
    [6]H. F. Ghaemi, T. Thio, D. E. Grupp, T.W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes” Phys. Rev B, 58, 15 September (1998).
    [7]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture” Science, 297, 2 August (2002).
    [8]F.I. Baida, D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays” Phys. Rev B, 67, 155314, (2003).
    [9]F. I. Baida, D. Van Labeke, B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films” App. Opt, 42, 34, (2003).
    [10]V. Lomakin, N. W. Chen, S. Q. Li, E. Michielssen, “Enhanced transmission through two-period arrays of subwavelength holes” IEEE Microwave and Wireless Components Letters, 14, 7, (2004).
    [11]C. Genet, T. W. Ebbesen, “Light in tiny holes” Nature, 445, 4 January (2007).
    [12] B. H. Jia, H. F. Shi, J. F. Li, Y. Q. Fu, C. L. Du, and M. Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits” Appl. Phys.Lett, 94, 151912, (2009).
    [13] Y. Q. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C.T. Wang, X. Luo,” Transmission and reflection navigated optical probe with depth-tuned surface corrugations” Appl. Phys. B, 86, 155-158, (2007).
    [14]R. G. Mote , W. Zhou , Y. Q. Fu, “Beaming of light through depth-tuned plasmonic nanostructures” Optik, 121, 1962-1965, (2010).
    [15]F. J. Garcı´a-Vidal, L. Martı´n-Moreno, H. J. Lezec, T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations” Appl. Phys. Lett, 83, 22,(2003).
    [16]Z. J. Sun, H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses” Appl. Phys. Lett, 85, 4,(2004).
    [17]F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, A. Dereux, ” Efficient unidirectional nanoslit couplers for surface plasmons” Nature Physics, l3, May (2007).
    [18]E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons” Nature, 418, 304 (2002).
    [19]W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics” Nature, 424, 824,(2003).
    [20]S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators” Nature, 440, 508, (2006).
    [21]W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography” Nat. Nanotechnol. 3, 733 ,(2008).
    [22]B. G. Lee, S. O. Kim, H. Kim, Y. G. Lim, “Review the use of plasmonics in light beaming and focusing” Progress in Quantum Electronics, 34, 47–87, (2010).
    [23]H. A. Bethe, “Theory of diffraction by small holes”, Phys. Rev, 66, 163, (1944).
    [24]C. Genet, and T. W. Ebbesen, “Light in tiny holes” Nature, 445, 4 January (2007).
    [25]Julia W. P. Hsu, “Near-field scanning optical microscopy studies of electronic and photonic materials and devices”, Materials Science and Engineering, 33, 1-50, (2001).
    [26]A. G. T. Ruiter, “Near-field optical microscopy: towards the molecular scale” (1997).
    [27]E. A. Ash, G. Nicholls, “Super-resolution aperture scanning microscope” Nature, 234, 510-512, (1972).
    [28]D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20” App. Phys. Lett, 44, 651, (1984).
    [29]G. Binning, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy” Phys. Rev, 49, 1, 5 July (1982).
    [30]G. Binnig, and C. F. Quate, “Atomic force microscope” Phys. Rev, 56, 9, 3 March (1986).
    [31]R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy” Phys. Rev B, 39, 1, 1 January (1989).
    [32]D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, and S. Leblanc, “External and internal reflection near field microscopy: experiments and results” Appl. Opt, 29, 26, 10 September, (1990).
    [33]E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier - optical microscopy on a oanometric scale” Science, 251, 1468, (1991).
    [34]E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and nearfield scanning optical microscopy” Appl.Phys. Lett, 60, 2484, (1992).
    [35]S. F. Wu, “Review of near-field optical microscopy” Phys. China, 3, 263, (2006).
    [36]蔡定平, 科儀新知, 第21卷第五期, 17, (2000).
    [37]Private communications with Prof. K. R. Chen in Department of Physics, National Cheng Kung University.
    [38] http://www.ntmdt-tips.com/products/view/mf001( NT-MDT網站).

    下載圖示 校內:2017-09-03公開
    校外:2017-09-03公開
    QR CODE