簡易檢索 / 詳目顯示

研究生: 王信沺
Wang, Sin-Tian
論文名稱: 腸出血性大腸桿菌之OmpR蛋白協調毒力因子表達於秀麗隱桿線蟲之消化道中
OmpR coordinates the expression of virulence factors of enterohemorrhagic Escherichia coli in the alimentary tract of Caenorhabditis elegans
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 87
中文關鍵詞: 腸出血性大腸桿菌反應調控蛋白(OmpR)感應蛋白(EnvZ)第三型分泌系統 (T3SS)類志賀毒素秀麗隱桿線蟲
外文關鍵詞: Enterohemorrhagic Escherichia coli (EHEC), OmpR, EnvZ, Type III secretion system (T3SS), Shiga-like toxins (Stxs), Caenorhabditis elegans (C. elegans)
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸出血性大腸桿菌 (Enterohemorrhagic E. coli) 為腸道病原菌之一,會藉由第三型分泌系統 (T3SS) 與類志賀毒素 (Shiga-like toxins) 等基因表達,幫助細菌寄殖於腸道中,並造成病患產生嚴重腹瀉、出血性結腸炎以及溶血性尿毒症。然而,當腸出血性大腸桿菌進入消化道中,細菌會感受環境中的酸鹼值與滲透壓的改變,並同時協同調控應變基因與毒力因子的表達,但是對其調控機轉仍具有許多未解之謎。許多第三型分泌系統相關蛋白的表達,除了受到腸道細胞消除基因組調控子Ler (locus of enterocyte effacement-encoded regulator) 的控制,也於不同環境因子刺激下,受到非腸道細胞消除基因組調控子 (non-LEE-encoded regulators) 的調控。本論文,我們發現OmpR蛋白除了參與大腸桿菌對於滲透壓和酸鹼值的適應性外,也參與腸出血性大腸桿菌感染秀麗隱桿線蟲的致病機轉。我們的結果顯示,OmpR蛋白會直接地結合至ler基因的啟動子與stx1基因的啟動子,進而於轉錄層級中調節-ler、escV、escC、eae、espA第三型分泌系統相關基因等與類志賀毒素1 (Stx1) 的表達。除此之外,我們也證實腸出血性大腸桿菌於活體感染時,Ler基因的表達除了受秀麗隱桿線蟲的腸道環境影響外,也受OmpR蛋白調節Ler基因的表達。總結以上結果,我們發現OmpR蛋白為腸出血性大腸桿菌重要的調控子,可在體內胃腸道感染期間協調毒力因子的表達。

    Enterohemorrhagic Escherichia coli (EHEC), an enteropathogen colonizes in the intestine, causes severe diarrhea, hemorrhagic colitis, and sometimes leads to hemolytic uremic syndrome in humans by the expression of the type III secretion system (T3SS) and Shiga-like toxins (Stxs). However, how EHEC senses and responds to the changes of pH and osmolarity when entering the alimentary tract and concomitantly coordinate the expression of the virulence genes remained elusive. The T3SS-related genes are known to be regulated by the locus of enterocyte effacement (LEE)-encoded regulators, mainly the Ler, as well as non-LEE-encoded regulators in response to different environmental cues. Herein, we report that OmpR, which participates in the adaptation for osmolarity and pH alterations in E. coli, is required for EHEC infection in Caenorhabditis elegans. Our data also showed that the OmpR protein directly binds the ler promoter and the promoter of Shiga-like toxin 1 (stx1) gene to transcriptionally regulate the expression of T3SS and Stx1 toxin. Moreover, we demonstrated that the expression of ler in EHEC is in response to the intestinal environment and under regulation by OmpR in vivo. Taken together, we unveil that OmpR is an important regulator to coordinate the expression of virulence factors in EHEC during gastrointestinal infection in vivo

    目錄 口試合格證明書 I 中文摘要 II 英文摘要 III 致謝 IV 目錄 V Introduction 1 Enterohemorrhagic Escherichia coli 1 Type III secretion system (T3SS) 1 Shiga-like toxin 3 Two component system 4 Caenorhabditis elegans 5 Intestine of Caenorhabditis elegans 6 Bacterial infection by using C. elegans model 6 Specific Aim 8 Materials and methods 9 Bacterial and nematode strains 9 Construction of ompR transposon mutants 9 Construction of ompR and envZ deletion mutants 10 Construction of plasmids 11 Construction of dual fluorescence transcriptional reporter plasmid 11 The survival assay of C. elegans 12 Bacterial colonization in C. elegans intestine 12 The microvillar actin rearrangement in C. elegans 13 In silico analysis by PRODORIC 13 Protein purification 14 Western blotting of phosphorylated OmpR 14 Electrophoretic mobility shift assay (EMSA) 15 In vivo Reporter assay in C. elegans 16 In vitro reporter assay in LB broth 16 RNA extraction and qRT-PCR 17 Scanning electron microscopy (SEM) 17 Immunofluorescence stain 18 Results 19 ompR is required for the pathogenicity of EHEC in C. elegans 19 The EnvZ/OmpR two-component system is required for intestinal infection of EHEC in C. elegans 21 OmpR directly binds to the promoter regions of the ler and stx1A genes 23 OmpR is required for the expression of ler and stx1A in the host alimentary tract in vivo 24 OmpR is required for the expression of EHEC virulence genes 25 OmpR regulates pathogenesis of EHEC against human cells 26 Conclusion 28 Discussion 29 References 32 Table 40 Table 1. Nematode and bacterial strains 40 Table 2. Plasmids 41 Table 3. Primers used in cloning, mutant construction, and qRT–PCR 42 Table 4. The potential OmpR-binding sites in the EHEC virulence genes.. 44 Figure 45 Figure 1. Reduced toxicity of ompR mutants toward to C. elegans N2 strain. 45 Figure 2. The ompR mutants display attenuated-phenotype to colonize intestine of C. elegans. 46 Figure 3. The ompR mutants attenuated the ability of actin rearrangement in C. elegans.. 48 Figure 4. The ompR is also required in clinical EHEC isolates. 49 Figure 5. The ompR deletion mutants in other EHEC strains affected the ability of colonization in intestine of C. elegans.. 50 Figure 6. The function of ompR plays an important role in EHEC-induced actin rearrangement in C. elegans. 52 Figure 7. The mutants disrupted envZ-ompR signaling affecte EHEC toxicity in C. elegans. 53 Figure 8. The function of envZ-ompR signaling regulates the capacity of colonization in intestine of C. elegans. 54 Figure 9. The envZ-ompR signaling involves in the mechanism of EHEC-induced actin rearrangement in C. elegans. 56 Figure 10. The mimic-phosphorylated OmpR mutant, OmpR (D55E) rescues the toxicity of EHEC toward C. elegans. 57 Figure 11. The phosphorylated OmpR, OmpR (D55E) restored the capacity of colonization in intestine of C. elegans. 58 Figure 12. The phosphorylated OmpR mutant, OmpR (D55E) plays important role in EHEC-induced microvillar actin rearrangement in C. elegans. 60 Figure 13. The OmpR is solo phosphorylated at the Aspartate55 residue.. 61 Figure 14. Recombinant OmpR proteins purified by nickel column chromatography. 62 Figure 15. Recombinant proteins, OmpR directly bind to the ler promoter. 63 Figure 16. The OmpR proteins also directly bind to the promoter region of stx1A gene. 64 Figure 17. The phospho-mimic OmpR exhibits high affinity to binding the promoter region of ler gene.. 65 Figure 18. The ler promoter region (-5 to -255) is important for OmpR binding the biotin-labeling DNA. 68 Figure 19 Establishment of the in vivo reporter system of EHEC in the intestine of C. elegans. 69 Figure 20. The expression of ler was regulated by OmpR in vivo. 71 Figure 21. OmpR was required for stx1 expression in EHEC after mitomycin C treatment. 72 Figure 22. OmpR upregulated the expression of T3SS genes. 73 Figure 23. OmpR upregulated the expression of Shiga-like toxin 1. 74 Figure 24. OmpR is involved in EHEC-induced microvilli effacement in human cells. 75 Figure 25. OmpR is involved in pathogenesis of EHEC-induced microvilli effacement in human cells. 77 Figure 26. Schematic illustrating the relationship between EnvZ/OmpR-mediated pH and osmotic pressure sensing in the alimentary tract and coordination of the expression of EHEC virulence genes in vivo. 78 Appendix 79 Figure S1. The flowchart is a diagram that the intensity of fluorescence proteins in the intestine of C. elegans is quantified by the analysis software, Image Pro Plus Analysis Software. 79 Figure S2. The flowchart is a diagram that the areas of microvilli actin on the surface of Caco2 are quantified by Image J system.. 81 Figure S3. The virulent determine genes in EHEC were identified from EHEC Tn5 transposon mutant library by using EHEC-C. elegans platform.. 82 Table S6: Transposon screening candidate genes 83

    1. Nguyen Y, Sperandio V. 2012. Enterohemorrhagic E. coli (EHEC) pathogenesis. Frontiers in Cellular and Infection Microbiology 2:90.
    2. Perna NT, Plunkett G, 3rd, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529-533.
    3. Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI. 2000. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. The New England Journal of Medicine 342:1930-1936.
    4. Freedman SB, Xie J, Neufeld MS, Hamilton WL, Hartling L, Tarr PI, Alberta Provincial Pediatric Enteric Infection T, Nettel-Aguirre A, Chuck A, Lee B, Johnson D, Currie G, Talbot J, Jiang J, Dickinson J, Kellner J, MacDonald J, Svenson L, Chui L, Louie M, Lavoie M, Eltorki M, Vanderkooi O, Tellier R, Ali S, Drews S, Graham T, Pang XL. 2016. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis. Clinical Infectious Diseases 62:1251-1258.
    5. Goldwater PN, Bettelheim KA. 2012. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC medicine 10:12.
    6. McNeilly TN, Mitchell MC, Rosser T, McAteer S, Low JC, Smith DG, Huntley JF, Mahajan A, Gally DL. 2010. Immunization of cattle with a combination of purified intimin-531, EspA and Tir significantly reduces shedding of Escherichia coli O157:H7 following oral challenge. Vaccine 28:1422-1428.
    7. McNeilly TN, Mitchell MC, Corbishley A, Nath M, Simmonds H, McAteer SP, Mahajan A, Low JC, Smith DG, Huntley JF, Gally DL. 2015. Optimizing the protection of cattle against Escherichia coli O157:H7 colonization through immunization with different combinations of H7 flagellin, Tir, intimin-531 or EspA. PloS one 10:e0128391.
    8. Desin TS, Townsend HG, Potter AA. 2015. Antibodies directed against Shiga-toxin producing Escherichia coli serotype O103 type III secreted proteins block adherence of eeterologous STEC serotypes to HEp-2 cells. PloS one 10:e0139803.
    9. Lim JY, Yoon J, Hovde CJ. 2010. A brief overview of Escherichia coli O157:H7 and its plasmid O157. Journal of Microbiology and Biotechnology 20:5-14.
    10. Slater SL, Sagfors AM, Pollard DJ, Ruano-Gallego D, Frankel G. 2018. The type III secretion system of pathogenic Escherichia coli. Current Topics in Microbiology and Immunology 416:51-72.
    11. Gaytan MO, Martinez-Santos VI, Soto E, Gonzalez-Pedrajo B. 2016. Type three secretion system in attaching and effacing pathogens. Frontiers in Cellular and Infection Microbiology 6:129.
    12. Battle SE, Brady MJ, Vanaja SK, Leong JM, Hecht GA. 2014. Actin pedestal formation by enterohemorrhagic Escherichia coli enhances bacterial host cell attachment and concomitant type III translocation. Infection and Immunity 82:3713-3722.
    13. Mousnier A, Whale AD, Schuller S, Leong JM, Phillips AD, Frankel G. 2008. Cortactin recruitment by enterohemorrhagic Escherichia coli O157:H7 during infection in vitro and ex vivo. Infection and Immunity 76:4669-4676.
    14. Wong AR, Raymond B, Collins JW, Crepin VF, Frankel G. 2012. The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP-interacting protein (WIP). Cellular Microbiology 14:1051-1070.
    15. Ramu T, Prasad ME, Connors E, Mishra A, Thomassin JL, Leblanc J, Rainey JK, Thomas NA. 2013. A novel C-terminal region within the multicargo type III secretion chaperone CesT contributes to effector secretion. Journal of Bacteriology 195:740-756.
    16. Munera D, Martinez E, Varyukhina S, Mahajan A, Ayala-Sanmartin J, Frankel G. 2012. Recruitment and membrane interactions of host cell proteins during attachment of enteropathogenic and enterohaemorrhagic Escherichia coli. The Biochemical Journal 445:383-392.
    17. Pearson JS, Giogha C, Muhlen S, Nachbur U, Pham CL, Zhang Y, Hildebrand JM, Oates CV, Lung TW, Ingle D, Dagley LF, Bankovacki A, Petrie EJ, Schroeder GN, Crepin VF, Frankel G, Masters SL, Vince J, Murphy JM, Sunde M, Webb AI, Silke J, Hartland EL. 2017. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nature Microbiology 2:16258.
    18. Elliott SJ, Sperandio V, Giron JA, Shin S, Mellies JL, Wainwright L, Hutcheson SW, McDaniel TK, Kaper JB. 2000. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infection and Immunity 68:6115-6126.
    19. Egan M, Critelli B, Cleary SP, Marino M, Upreti C, Kalman D, Bhatt S. 2019. Transcriptional and posttranscriptional regulation of the locus of enterocyte effacement in Escherichia albertii. Microbial Pathogenesis 135:103643.
    20. Jimenez R, Cruz-Migoni SB, Huerta-Saquero A, Bustamante VH, Puente JL. 2010. Molecular characterization of GrlA, a specific positive regulator of ler expression in enteropathogenic Escherichia coli. Journal of Bacteriology 192:4627-4642.
    21. Yang B, Feng L, Wang F, Wang L. 2015. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection. Nature Communications 6:6592.
    22. Moreira CG, Sperandio V. 2016. The Epinephrine/Norepinephrine/Autoinducer-3 Interkingdom Signaling System in Escherichia coli O157:H7. Advances in Experimental Medicine and Biology 874:247-261.
    23. Franzin FM, Sircili MP. 2015. Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation. BioMed Research International 2015:534738.
    24. Njoroge JW, Nguyen Y, Curtis MM, Moreira CG, Sperandio V. 2012. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. mBio 3:e00280-00212.
    25. Price SB, Cheng CM, Kaspar CW, Wright JC, DeGraves FJ, Penfound TA, Castanie-Cornet MP, Foster JW. 2000. Role of rpoS in acid resistance and fecal shedding of Escherichia coli O157:H7. Applied and Environmental Microbiology 66:632-637.
    26. Hansen AM, Kaper JB. 2009. Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Molecular Microbiology 73:446-465.
    27. Shakhnovich EA, Davis BM, Waldor MK. 2009. Hfq negatively regulates type III secretion in EHEC and several other pathogens. Molecular Microbiology 74:347-363.
    28. Etcheverria AI, Padola NL. 2013. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence 4:366-372.
    29. Hofmann SL. 1993. Southwestern Internal Medicine Conference: Shiga-like toxins in hemolytic-uremic syndrome and thrombotic thrombocytopenic purpura. The American Journal of the Medical Sciences 306:398-406.
    30. Betz J, Bielaszewska M, Thies A, Humpf HU, Dreisewerd K, Karch H, Kim KS, Friedrich AW, Muthing J. 2011. Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. Journal of Lipid Research 52:618-634.
    31. Hall G, Kurosawa S, Stearns-Kurosawa DJ. 2017. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins 9.
    32. Li XP, Tumer NE. 2017. Differences in Ribosome Binding and Sarcin/Ricin Loop Depurination by Shiga and Ricin Holotoxins. Toxins 9.
    33. Jandhyala DM, Ahluwalia A, Schimmel JJ, Rogers AB, Leong JM, Thorpe CM. 2016. Activation of the Classical Mitogen-Activated Protein Kinases Is Part of the Shiga Toxin-Induced Ribotoxic Stress Response and May Contribute to Shiga Toxin-Induced Inflammation. Infection and Immunity 84:138-148.
    34. Lee SY, Lee MS, Cherla RP, Tesh VL. 2008. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cellular Microbiology 10:770-780.
    35. Melton-Celsa AR, O'Brien AD. 2014. New Therapeutic Developments against Shiga Toxin-Producing Escherichia coli. Microbiology Spectrum 2.
    36. Kenney LJ, Anand GS. 2020. EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically. EcoSal Plus 9.
    37. Chakraborty S, Kenney LJ. 2018. A New Role of OmpR in Acid and Osmotic Stress in Salmonella and E. coli. Frontiers in Microbiology 9:2656.
    38. Chakraborty S, Winardhi RS, Morgan LK, Yan J, Kenney LJ. 2017. Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nature Communications 8:1587.
    39. Desai SK, Kenney LJ. 2017. To ~P or not to ~P? non-canonical activation by two-component response regulators. Molecular Microbiology 103:203-213.
    40. Wurtzel ET, Chou MY, Inouye M. 1982. Osmoregulation of gene expression. I. DNA sequence of the ompR gene of the ompB operon of Escherichia coli and characterization of its gene product. The Journal of Biological Chemistry 257:13685-13691.
    41. Norioka S, Ramakrishnan G, Ikenaka K, Inouye M. 1986. Interaction of a transcriptional activator, OmpR, with reciprocally osmoregulated genes, ompF and ompC, of Escherichia coli. The Journal of Biological Chemistry 261:17113-17119.
    42. Yoshida T, Qin L, Egger LA, Inouye M. 2006. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. The Journal of Biological Chemistry 281:17114-17123.
    43. Pratt LA, Hsing W, Gibson KE, Silhavy TJ. 1996. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Molecular Microbiology 20:911-917.
    44. Takayanagi K, Maeda S, Mizuno T. 1991. Expression of micF involved in porin synthesis in Escherichia coli: two distinct cis-acting elements respectively regulate micF expression positively and negatively. FEMS Microbiology Letters 67:39-44.
    45. Chen S, Zhang A, Blyn LB, Storz G. 2004. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. Journal of Bacteriology 186:6689-6697.
    46. Shimada T, Takada H, Yamamoto K, Ishihama A. 2015. Expanded roles of two-component response regulator OmpR in Escherichia coli: genomic SELEX search for novel regulation targets. Genes to Cells : Devoted to Molecular & Cellular Mechanisms 20:915-931.
    47. Cameron AD, Dorman CJ. 2012. A fundamental regulatory mechanism operating through OmpR and DNA topology controls expression of Salmonella pathogenicity islands SPI-1 and SPI-2. PLoS Genetics 8:e1002615.
    48. Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71-94.
    49. Ewbank JJ, Zugasti O. 2011. C. elegans: model host and tool for antimicrobial drug discovery. Disease Models & Mechanisms 4:300-304.
    50. Sato M, Saegusa K, Sato K, Hara T, Harada A, Sato K. 2011. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Molecular Biology of the Cell 22:2579-2587.
    51. MacQueen AJ, Baggett JJ, Perumov N, Bauer RA, Januszewski T, Schriefer L, Waddle JA. 2005. ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Molecular Biology of the Cell 16:3247-3259.
    52. McGhee JD. 2007. The C. elegans intestine. WormBook : the online review of C. elegans Biology:1-36.
    53. Allman E, Wang Q, Walker RL, Austen M, Peters MA, Nehrke K. 2016. Calcineurin homologous proteins regulate the membrane localization and activity of sodium/proton exchangers in C. elegans. American Journal of Physiology. Cell Physiology 310:C233-242.
    54. Benomar S, Lansdon P, Bender AM, Peterson BR, Chandler JR, Ackley BD. 2020. The C. elegans CHP1 homolog, pbo-1, functions in innate immunity by regulating the pH of the intestinal lumen. PLoS Pathogens 16:e1008134.
    55. Chauhan VM, Orsi G, Brown A, Pritchard DI, Aylott JW. 2013. Mapping the pharyngeal and intestinal pH of Caenorhabditis elegans and real-time luminal pH oscillations using extended dynamic range pH-sensitive nanosensors. ACS Nano 7:5577-5587.
    56. Bender A, Woydziak ZR, Fu L, Branden M, Zhou Z, Ackley BD, Peterson BR. 2013. Novel acid-activated fluorophores reveal a dynamic wave of protons in the intestine of Caenorhabditis elegans. ACS Chemical Biology 8:636-642.
    57. Lee K, Mylonakis E. 2017. An intestine-derived neuropeptide controls avoidance behavior in Caenorhabditis elegans. Cell Reports 20:2501-2512.
    58. Kho MF, Bellier A, Balasubramani V, Hu Y, Hsu W, Nielsen-LeRoux C, McGillivray SM, Nizet V, Aroian RV. 2011. The pore-forming protein Cry5B elicits the pathogenicity of Bacillus sp. against Caenorhabditis elegans. PloS one 6:e29122.
    59. Bellier A, Chen CS, Kao CY, Cinar HN, Aroian RV. 2009. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathogens 5:e1000689.
    60. Chen HD, Kao CY, Liu BY, Huang SW, Kuo CJ, Ruan JW, Lin YH, Huang CR, Chen YH, Wang HD, Aroian RV, Chen CS. 2017. HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans. Autophagy 13:371-385.
    61. Chen YW, Ko WC, Chen CS, Chen PL. 2018. RIOK-1 is a suppressor of the p38 MAPK innate immune pathway in Caenorhabditis elegans. Frontiers in Immunology 9:774.
    62. Chou TC, Chiu HC, Kuo CJ, Wu CM, Syu WJ, Chiu WT, Chen CS. 2013. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cellular Microbiology 15:82-97.
    63. Ermolaeva MA, Schumacher B. 2014. Insights from the worm: the C. elegans model for innate immunity. Seminars in Immunology 26:303-309.
    64. Kuo CJ, Chen JW, Chiu HC, Teng CH, Hsu TI, Lu PJ, Syu WJ, Wang ST, Chou TC, Chen CS. 2016. Mutation of the enterohemorrhagic Escherichia coli core LPS biosynthesis enzyme RfaD confers hypersusceptibility to host intestinal innate immunity in vivo. Frontiers in Cellular and Infection Microbiology 6:82.
    65. Kuo CJ, Wang ST, Lin CM, Chiu HC, Huang CR, Lee DY, Chang GD, Chou TC, Chen JW, Chen CS. 2018. A multi-omic analysis reveals the role of fumarate in regulating the virulence of enterohemorrhagic Escherichia coli. Cell Death & Disease 9:381.
    66. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America 97:6640-6645.
    67. Huang CR, Kuo CJ, Huang CW, Chen YT, Liu BY, Lee CT, Chen PL, Chang WT, Chen YW, Lee TM, Hsieh HC, Chen CS. 2021. Host CDK-1 and formin mediate microvillar effacement induced by enterohemorrhagic Escherichia coli. Nature Communications 12:90.
    68. Munch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E, Jahn D. 2003. PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Research 31:266-269.
    69. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. 2006. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Molecular & Cellular Proteomics 5:749-757.
    70. Egger LA, Park H, Inouye M. 1997. Signal transduction via the histidyl-aspartyl phosphorelay. Genes to Cells : Devoted to Molecular & Cellular Mechanisms 2:167-184.
    71. Abe H, Tatsuno I, Tobe T, Okutani A, Sasakawa C. 2002. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7. Infection and Immunity 70:3500-3509.
    72. Law RJ, Gur-Arie L, Rosenshine I, Finlay BB. 2013. In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections. Cold Spring Harbor Perspectives in Medicine 3:a009977.
    73. Anderson GL, Kenney SJ, Millner PD, Beuchat LR, Williams PL. 2006. Shedding of foodborne pathogens by Caenorhabditis elegans in compost-amended and unamended soil. Food Microbiology 23:146-153.
    74. Barbieri CM, Wu T, Stock AM. 2013. Comprehensive analysis of OmpR phosphorylation, dimerization, and DNA binding supports a canonical model for activation. Journal of Molecular Biology 425:1612-1626.
    75. Kong HK, Pan Q, Lo WU, Liu X, Law COK, Chan TF, Ho PL, Lau TC. 2018. Fine-tuning carbapenem resistance by reducing porin permeability of bacteria activated in the selection process of conjugation. Scientific Reports 8:15248.
    76. De la Cruz MA, Morgan JK, Ares MA, Yanez-Santos JA, Riordan JT, Giron JA. 2016. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving sigma(32) and Lon protease. Frontiers in Cellular and Infection Microbiology 6:11.
    77. Strockbine NA, Marques LR, Newland JW, Smith HW, Holmes RK, O'Brien AD. 1986. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and Immunity 53:135-140.
    78. Yu SL, Ko KL, Chen CS, Chang YC, Syu WJ. 2000. Characterization of the distal tail fiber locus and determination of the receptor for phage AR1, which specifically infects Escherichia coli O157:H7. Journal of Bacteriology 182:5962-5968.
    79. Valdivia RH, Falkow S. 1996. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Molecular Microbiology 22:367-378.
    80. Serra-Moreno R, Acosta S, Hernalsteens JP, Jofre J, Muniesa M. 2006. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Molecular Biology 7:31.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE