簡易檢索 / 詳目顯示

研究生: 吳欣儒
Wu, Hsin-Ju
論文名稱: 具高度順向性之聚癸二酸丙三醇酯纖維薄膜的製備與特性描述
Fabrication and characterization of an aligned poly(glycerol sebacate) fibrous membrane
指導教授: 胡晉嘉
Hu, Jin-Jia
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 49
中文關鍵詞: 同軸靜電紡絲聚癸二酸丙三醇酯(PGS)高度順向性纖維力學性質
外文關鍵詞: Fibrous scaffolds, coaxial electrospinning, poly(glycerol sebacate), mechanical properties, anisotropic
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚癸二酸丙三醇酯(PGS)彈性體已成功地應用在軟組織工程領域中,是一個同時 具有彈性、生物相容性、生物降解性與血液相容性的材料,然而要製備出纖維型態的 PGS是相當困難的,PGS彈性體無法溶解於溶劑中,PGS預聚物因分子量低,溶液黏 度低,無法單獨被電紡。我們以同軸靜電紡絲法製備出具纖維結構的PGS薄膜,使用 可以被電紡的高分子溶液(PEO/PLA)作為殼層,帶出不可被電紡的芯層(PGS預聚物), 調整內芯70wt% PGS預聚物的溶液黏度和提升外殼溶液中PLA的含量,以穿透式電子 顯微鏡與掃描式電子顯微鏡分別確認了芯殼的纖維結構與纖維型態,改善了同軸靜電 紡絲的條件,降低PGS預聚物在高溫交聯時外漏的可能。透過紅外光譜分析儀與示差 熱掃描分析儀確認PEO與PLA經過一系列處理步驟後皆完全被移除。我們製備出具高 度順向性的PGS纖維薄膜,以單軸拉伸測試與纖維方向平行拉伸及與纖維方向垂直拉 伸的力學性質,結果顯示出非等向性(anisotropic)的力學性質,其楊氏模數(0.52-0.98MPa)與軟組織相近。電紡纖維對人類臍動脈平滑肌肉細胞產生了細胞接觸 引導的能力,能夠模仿天然組織結構。我們亦透過Alamar blue與LDH assay證實其具 有良好的生物相容性,可於組織工程的領域中有著多元的應用。

    Although we have successfully fabricated poly(glycerol sebacate) (PGS) fibrous membrane by coaxial electrospinning, it remains PGS prepolymer leak-out issue during the fabrication process. In this study, we tended to reduce the ratio of PEO to PLA in the shell solution or use more intensively crosslinked pPGS. On the other hand, one of the advantages of using fibrous scaffolds in tissue engineering is that cell alignment and hence tissue microstructure may be manipulated by the mechanism of contact guidance. Therefore, we focused on fabricating highly aligned PGS fibrous membrane. The core-shell fiber structure was confirmed by TEM. From the SEM images, we successfully mitigated pPGS leak-out from the inner core. Both of PEO and PLA were removed from the PGS fibrous membrane, which were verified by FTIR and DSC. The alignment index of PGS fibrous membrane was 2.06±0.21 indicating that PGS fibers were highly aligned. From the results of cyclic stretching test, we further affirmed that PLA was removed. PGS fibrous membrane also showed anisotropic mechanical properties examining by uniaxial tensile test. It’s Young’s modulus was 0.52-0.98MPa which was similar to soft tissues. Anisotropic PGS electrospun fibers promoted human umbilical smooth muscle cell guidance. We discovered that the degradation rate of PGS fibrous membrane was slower than PGS solid sheet, indicating that the crosslinking degree of PGS fibrous membrane might be higher than PGS solid sheet. The in vitro cytocompatibility of the electrospun membranes was confirmed. The aligned PGS fibrous membrane has the potential to be used for soft tissue engineering applications

    摘要................................................................................................... I Extended Abstract.............................................................................II 誌謝..................................................................................................VII 第一章 緒論........................................................................................ 1 1-1 組織工程三要素..........................................................................1 1-2 製作組織工程支架的方法............................................................2 1-3 聚癸二酸丙三醇酯彈性體............................................................2 1-4 靜電紡絲法................................................................................3 1-4.1 同軸靜電紡絲法.....................................................................4 1-4.2 靜電紡絲操作參數.................................................................6 1-4.3 製備具方向性的纖維的方法....................................................9 1-5 研究目的....................................................................................10 第二章、材料與方法 ...........................................................................12 2-1 材料..........................................................................................12 2-2 聚癸二酸丙三醇酯預聚物的合成.................................................12 2-3 溶液配製...................................................................................12 2-4 同軸靜電紡絲設備.....................................................................12 2-5 同軸靜電紡絲參數調控...............................................................13 2-6 纖維薄膜製作............................................................................13 2-7 穿透式電子顯微鏡.....................................................................14 2-8 掃描式電子顯微鏡.....................................................................15 2-9 傅立葉轉換紅外光光譜儀...........................................................15 2-10 示差掃描量熱分析儀(Differential scanning calorimetry, DSC).15 2-11 纖維方向性分布之量化分析.......................................................15 2-12 單軸拉伸測試...........................................................................16 2-13 體外降解測試...........................................................................17 2-14 細胞染色..................................................................................17 2-15 倒立式螢光顯微鏡....................................................................17 2-16 細胞相容性測試(cytocompatibility)[51]...................................18 2-17 統計分析.................................................................................18 第三章 結果........................................................................................19 3-1 同軸電紡纖維.............................................................................19 3-2 同軸電紡纖維薄膜型態與纖維直徑分布.......................................20 3-3 紅外線光譜分析結果..................................................................22 3-4 示差熱掃描分析儀結果...............................................................26 3-5 纖維方向性分布之量化結果........................................................30 3-6 單軸拉伸測試結果.....................................................................30 3-6 體外降解測試............................................................................32 3-7 細胞在PGS纖維薄膜上的生長形態..............................................34 3-8 細胞相容性................................................................................35 第四章 討論........................................................................................37 4-1 同軸電紡內管黏度與濃度的影響..................................................37 4-2 同軸電紡外管混合比例與黏度的影響...........................................37 4-3 同軸電紡纖維之芯/殼結構..........................................................37 4-4 示差熱掃描儀之熱分析...............................................................38 4-5 PGS 纖維薄膜力學性質之分析 ...................................................38 4-6 PGS 降解之分析 .......................................................................39 4-7 纖維順向性對細胞生長型態的影響..............................................40 4-8 PGS 纖維薄膜對細胞活性之分析 ...............................................40 第五章 結論.......................................................................................41 第六章 文獻回顧................................................................................42

    [1.]Bell, E., B. Ivarsson, and C. Merrill, Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human-Fibroblasts of Different Proliferative Potential Invitro. Proceedings of the National Academy of Sciences of the United States of America, 1979. 76(3): 1274-1278.
    [2.]Chen, Q.Z., S.L. Liang, and G.A. Thouas, Elastomeric biomaterials for tissue engineering. Progress in Polymer Science, 2013. 38(3-4): 584-671.
    [3.]Seal, B.L., T.C. Otero, and A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Materials Science & Engineering R-Reports, 2001. 34(4-5): 147-230.
    [4.]Motlagh, D., et al., Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 2006. 27(24): 4315-4324.
    [5.]Hu, J.J., et al., Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 13: 140-155.
    [6.]Baker, B.M., et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 2008. 29(15): 2348-2358.
    [7.]Zhu, X.L., et al., Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules, 2008. 9(7): 1795-1801.
    [8.]Wang, Y.D., et al., A tough biodegradable elastomer. Nature Biotechnology, 2002. 20(6): 602-606.
    [9.]Mortensen, P.B. and N. Gregersen, The biological origin of ketotic dicarboxylic aciduria. In vivo and in vitro investigations of the omega-oxidation of C6-C16-monocarboxylic acids in unstarved, starved and diabetic rats. Biochim Biophys Acta, 1981. 666(3): 394-404.
    [10.]Liu, G.Y., B. Hinch, and A.D. Beavis, Mechanisms for the transport of alpha,omega-dicarboxylates through the mitochondrial inner membrane. Journal of Biological Chemistry, 1996. 271(41): 25338-25344.
    [11.]James Mark, B.E., Frederick Eirich, Science and Technology of Rubber. second ed. 1994, U.S.A., A Division of Harcourt Brace & Company. 189-210.
    [12.]Voet, D., Voet, J.G. , Biochemistry second ed. 1995, U.S.A., John Wiley & Sons company.
    [13.]Tien, Y.I. and K.H. Wei, Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer, 2001. 42(7): 3213-3221.
    [14.]Huang, Z.M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): 2223-2253.
    [15.]Formhals, A., Process and apparatus for preparing artificial threads, US patent: 1975504, Oct. 2nd, 1934
    [16.]Bhattarai, S.R., et al., Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials, 2004. 25(13): 2595-2602.
    [17.]Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996. 7(3): 216-223.
    [18.]Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Engineering, 2006. 12(5): 1197-1211.
    [19.]Sun, Z.C., et al., Compound core-shell polymer nanofibers by co-electrospinning. Advanced Materials, 2003. 15(22): 1929-1932.
    [20.]張彥中, 黄爭鳴., Coaxial composite continuous nano/micron fiber and its preparation method, China patent: CN1537981A, Oct. 20th, 2008.
    [21.]Saraf, A., et al., Fabrication of Nonwoven Coaxial Fiber Meshes by Electrospinning. Tissue Engineering Part C-Methods, 2009. 15(3): 333-344.
    [22.]Wang, C., et al., Biodegradable Core/Shell Fibers by Coaxial Electrospinning: Processing, Fiber Characterization, and Its Application in Sustained Drug Release. Macromolecules, 2010. 43(15): 6389-6397.
    [23.]Townsend-Nicholson, A. and S.N. Jayasinghe, Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules, 2006. 7(12): 3364-3369.
    [24.]Elahi, M.F. and W. Lu, Core-shell Fibers for Biomedical Applications-A Review. Journal of Bioengineering & Biomedical Science, 2013. 03(01).
    [25.]Gao, J.,M. Crapo, and Y.D. Wang, Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Engineering, 2006. 12(4): 917-925.
    [26.]Moghe, A.K. and B.S. Gupta, Co-axial electrospinning for nanofiber structures: Preparation and applications. Polymer Reviews, 2008. 48(2): 353-377.
    [27.]Diaz, J.E., et al., Controlled encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning. Advanced Functional Materials, 2006.16(16): 2110-2116.
    [28.]Yu, J.H., S.V. Fridrikh, and G.C. Rutledge, Production of submicrometer diameter fibers by two-fluid electrospinning. Advanced Materials, 2004. 16(17): 1562-1566.
    [29.]Zhang, Y.Z., et al., Preparation of core-shell structured PCL-r-gelatin Bi-component nanofibers by coaxial electrospinning. Chemistry of Materials, 2004. 16(18):3406-3409.
    [30.]Li, D., et al., Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Advanced Materials, 2004. 16(22): 2062-2066.
    [31.]Moghe, A.K.G., J.M.;Gupta,B.S.;King,M.W., Electrospun Bicomponent Fibers for Soft Tissue Engineering, in The Fiber Society Fall 2005 Annual Meeting and Technical Conference. 2005: Newark NJ, U.S.A. 73–74.
    [32.]Wang, M., et al., Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning. Macromolecules, 2006. 39(3):1102-1107.
    [33.]Li, D. and Y.N. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters, 2004. 4(5): 933-938.
    [34.]Buchko, C.J., et al., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999. 40(26): 7397-7407.
    [35.]Kim, H.S., et al., Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(L-lactide) and poly(lactide-co-glycolide).Macromolecular Symposia, 2005. 224(1): 145-154.
    [36.]Jun, Z., et al., Poly-L-lactide nanofibers by electrospinning - Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers, 2003. 3(1): 102-110
    [37.]Geng, X.Y., O.H. Kwon, and J.H. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): 5427-5432.
    [38.]Zhao, Z.Z., et al., Preparation and properties of electrospun poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 2005. 97(2): 466-474.
    [39.]王盈淇, 溫度效應對電紡絲製備高分子纖維之影響, in 化學工程學系. 2006, 國立成功大學: 台灣.
    [40.]Tripatanasuwan, S., Z.X. Zhong, and D.H. Reneker, Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution. Polymer, 2007. 48(19): 5742-5746.
    [41.]De Vrieze, S., et al., The effect of temperature and humidity on electrospinning. Journal of Materials Science, 2009. 44(5): 1357-1362.
    [42.]Golin, A.P., Humidity Effect on the Structure of Electrospun Core-Shell PCL-PEG Fibers for Tissue Regeneration Applications, in Electronic Thesis and Dissertation Repository. 2014. Paper 1999.
    [43.]Zhang, Y.Z., et al., Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules, 2006. 7(4): 1049-1057.
    [44.]Sun, B., B. Duan, and X.Y. Yuan, Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. Journal of Applied Polymer Science, 2006. 102(1):39-45.
    [45.]Teo, W.E. and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006. 17(14): R89-R106.
    [46.]Zhang, J.G., et al., The aligned core-sheath nanofibers with electrical conductivity for neural tissue engineering. Journal of Materials Chemistry B, 2014. 2(45):7945-7954.
    [47.]He, C.L., Z.M. Huang, and X.J. Han, Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. Journal of Biomedical Materials Research Part A, 2009. 89a(1): 80-95.
    [48.]Huang, Y.S., et al., Highly Aligned and Single-Layered Hollow Fibrous Membranes Prepared from Polyurethane and Silica Blends Through a Two-Fluid Coaxial Electrospun Process. Macromolecular Chemistry and Physics, 2014. 215(9): 879-887.
    [49.]趙偉志, 用於組織工程血管之電紡支架, in 醫學工程研究所. 2011, 國立成功大 學: 台灣.
    [50.]Hu, J.J., J.D. Humphrey, and A.T. Yeh, Characterization of Engineered Tissue Development Under Biaxial Stretch Using Nonlinear Optical Microscopy. Tissue Engineering Part A, 2009. 15(7): 1553-1564.
    [51.]You, Z.R., et al., Fabrication of poly(glycerol sebacate) fibrous membranes by coaxial electrospinning: Influence of shell and core solutions. Journal of the Mechanical Behavior of Biomedical Materials, 2016. 63: 220-231.
    [52.]Rai, R., et al., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 2012. 37(8): 1051-1078.
    [53.]Jeffries, E.M., et al., Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomaterialia, 2015. 18: 30-39.
    [54.]Dong, H., et al., Polyaniline/poly(methyl methacrylate) coaxial fibers: The fabrication and effects of the solution properties on the morphology of electrospun core fibers. Journal of Polymer Science Part B-Polymer Physics, 2004. 42(21): 3934-3942.
    [55.]Xu, B., et al., Aligned core/shell electrospinning of poly(glycerol sebacate)/poly(L-lactic acid) with tuneable structural and mechanical properties. Polymer International, 2016. 65(4): 423-429.
    [56.]Frydrych, M. and B.Q. Chen, Large three-dimensional poly(glycerol sebacate)-based scaffolds-a freeze-drying preparation approach. Journal of Materials Chemistry B, 2013. 1(48): 6650-6661.
    [57.]Chen, Q.Z., et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 2008. 29(1): 47-57.
    [58.]Pomerantseva, I., et al., Degradation behavior of poly(glycerol sebacate). Journal of Biomedical Materials Research Part A, 2009. 91a(4): 1038-1047.
    [59.]Gaharwar, A.K., et al., Anisotropic poly (glycerol sebacate)-poly (epsilon-caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication, 2015. 7(1).
    [60.]Wang, X.F., B. Ding, and B.Y. Li, Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 2013. 16(6): 229-241.
    [61.]Yang, F., et al., Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15):2603-2610.
    [62.]Bashur, C.A., L.A. Dahlgren, and A.S. Goldstein, Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials, 2006. 27(33): 5681-5688.
    [63.]Xu, B., et al., Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation. Biomaterials, 2013. 34(27): 6306-6317.

    無法下載圖示 校內:2021-12-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE