| 研究生: |
莊彧州 Chuang, Yu-Chou |
|---|---|
| 論文名稱: |
以微光致螢光系統研究藍相液晶微球與溫度關係及雷射相關應用 Temperature dependence and laser application of blue phase microdroplets using micro-PL system |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 微光致螢光系統 、藍相液晶微球 、光子能隙 、雷射 |
| 外文關鍵詞: | µ-PL system, blue phase microdroplet, photonic bandgap, laser |
| 相關次數: | 點閱:77 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,國內外許多研發團隊針對藍相液晶,進行多面向之應用性研究,如光子能隙元件、顯示器與雷射等。其中截至目前為止,針對單顆藍相液晶微球之真實反射特性與雷射相關應用之研究相當少,為此,本論文主要發展一套微光致螢光系統結合可溫控反射式顯微鏡,可同時針對材料微區域(最小可解析區直徑為20 μm)進行藍相液晶微球實際的反射光譜、白光顯微影像、雷射激發之螢光影像及頻譜量測與觀察。本研究可利用此系統探討藍相液晶微球的溫寬及不同溫度下布拉格反射波段的確切變化,實驗結果發現藍相液晶微球的光子能隙隨溫度改變有線性及非線性的關係,我們透過反射頻譜及顯微影像提出了基本物理機制以說明此現象。
此外,本論文也利用微流道系統及聚合物穩固技術,製造顆粒大小很均勻之染料摻雜藍相液晶微球,透過微光致螢光系統進行微雷射器方面之應用,實驗結果顯示藍相液晶微球可產生兩種不同模態的雷射: 能隙邊緣雷射(bandedge lasing)及耳語迴廊模態雷射(whispering gallery mode lasing),量取與探討此兩種模態雷射之基本特性。本論文發展微光致螢光系統結合可溫控反射式顯微鏡系統之優點為在溫度可變化之下,可確切量測到小範圍(例如單顆藍相微球範圍)之光子能隙特性、雷射激發之螢光影像、頻譜量測與觀察及白光顯微影像等,對小範圍材料之光學特性之研究有相當程度之助益。
Many research groups in liquid crystal (LC) field begin to pay attention to multi-dimensional study in application using blue phase (BP) materials in the recent years, such as photonic bandgap (PBG) device, display, and laser. So far less investigation was performed in measuring the accurate reflection properties of single BP microdroplet and associated lasing application. This thesis develops a µ-PL system combined with a temperature-controllable reflectively polarizing optical microscopy for investigating the accurate reflection properties of the single BP microdroplet such as the reflection spectra, white-light micro images, fluorescence micro images, and lasing spectra. This study may use the system to explore the temperature range for the existence of BP and the accurate variation of the Bragg reflection band. Experimental results show that the PBG and peak wavelength of the BP microdroplets can vary with temperature as a linear or nonlinear variation. We address some physical models to explain these results.
In addition, this thesis also use a microchannel system and polymer stabilization technique to fabricate polymer stabilized dye-doped BP (PSDDBP) microdroplets with uniform size and study the PSDDBP microlaser using the above-mentioned system. Experimental results display that the PSDDBP microdroplet can generate two types of lasing emission: bandedge mode and whispering gallery mode (WGM), and the two lasing modes appear different lasing properties. The most important advantage for the measuring system (µ-PL system merging with temperature-controllable POM system) developed in the thesis is to obtain the accurate optical properties of the materials used in a micrometer-scaled region (e.g., the region including single BP microdroplet) with the variation of temperature.
1 M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75(3), 316-318 (1999).
2 O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284(5421), 1819-1821 (1999).
3 M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81(15), 2680-2682 (2002).
4 H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, "Polymer-stabilized liquid crystal blue phases," Nat. Mater. 1(1), 64-68 (2002).
5 José A. Martínez-Gonzáleza, Ye Zhoua, Mohammad Rahimia, Emre Bukusoglub, Nicholas L. Abbottb, and Juan J. de Pabloa, ”Blue-phase liquid crystal droplets,” PNAS ,112(13),13195–13200 (2015).
6 Emine Kemiklioglu and Liang-Chy Chien, "Polymer-encapsulated blue phase liquid crystal droplets," Liq. Cryst. 44(4), 722-728 (2017).
7 Emre Bukusoglu , Xiaoguang Wang , Jose A. Martinez-Gonzalez , Juan J. de Pablo and Nicholas L. Abbott , "Stimuli-Responsive Cubosomes Formed from Blue Phase Liquid Crystals," Adv. Mater. , 27, 6892–6898 (2015).
8 P. G. de Gennes and J. Prost, The Physics of Liquid Crystals 2nd ed.(Clarendon Press, Oxford, 1993).
9 S. Chandrasekhar, Liquid Crystals (Cambridge University Press, New York, 1992).
10 Amon Yariv and Pochi Yeh, Optical Waves in Crystals (John Wiley & Sons Press, New York, 1984).
11 陳怡君,"對膽固醇液晶雷射輸出大範圍調控之研究,"國立成功大學物理研究所碩士論文 (2005).
12 Pochi Yeh and Claire Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, New York, 1999).
13 A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997).
14 A. Saupe, “On molecular structure and physical properties of thermotropic liquid crystals,” Mol. Cryst. Liq. Cryst. 7(1), 59–74 (1969).
15 Hirotsugu Kikuchi, "Liquid crystalline blue phases", in Liquid Crystalline Functional Assemblies and Their Supramolecular Structures, edited by T. Kato, 128, 99-117 (2008).
16 S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, "Theory of the blue phase of cholesteric liquid-crystals," Phys. Rev. Lett. 46(18), 1216-1219 (1981).
17 P. E. Cladis, P. Pieranski, and M. Joanicot, "Elasticity of blue phase-i of cholesteric liquid-crystals," Phys. Rev. Lett. 52(7), 542-545 (1984).
18 P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
19 H. S. Kitzerow, "Blue phases come of age: a review," Proceedings of the SPIE - The International Society for Optical Engineering, 7232, 723205-723214 (2009).
20 I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (Taylor & Francis, London, 2004).
21 E. B. Priestley, Peter J. Wojtowicz, Ping Sheng , Introduction to Liquid Crystals (Plenum Press, New York, pp 103-127, 1975)
22 R. Miller, "Rhapsody in Blue," Liq. Cryst. Today, 9, 7-13(1999).
23 P.-E. Cladis, T. Garel, and P. Pieranski, "Kossel Diagrams Show Electric-Field-Induced Cubic-Tetragonal Structural Transition in Frustrated Liquid-Crystal Blue Phases," Phys. Rev. Lett., 57(22) , 2841-2844 (1986).
24 Z. Ge et al., "Electro-optics of polymer-stabilized blue phase liquid crystal displays," Appl. Phys. Lett. 94(10), 101104–101104 (2009).
25 H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, "Polymer-stabilized liquid crystal blue phases" , Nat. Mater. 1, 64-68 (2002)
26 A. Yariv and P. Yeh, Photonics (Oxford University Press, New York, 2007).
27 B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 2007).
28 D. C. O’shea, W. R. Callen, and W. T. Rhodes, Introduction to Lasers and Their Applications (Addison Wesley, Boston, 1977).
29 J. T. Verdeyen, Laser Electronics (Prentice Hall, Inc., 3rd ed., 1995).
30 L. S. Goldberg and J. M. Schnur, "Tunable internal-feedback liquid crystal laser," (U.S. patent 3,771,065, 1973).
31 V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23(21), 1707-1709 (1998).
32 J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band-edge laser - a new approach to gain enhancement," J. Appl. Phys. 75(4), 1896-1899 (1994).
33 H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 453(5), 2327-2335 (1972).
34 J. W. Strutt, The Theory of Sound (Dover, New York, 1945).
35 J.A. Stratton, Electromagnetic theory (John Wiley & Sons 2007).
36 A. B. Matsko, V. S. Ilchenko, "Optical resonators with whispering gallery modes I:
basics.," IEEE J. Sel. Top. Quant., 12(1), 3-14 (2006).
37 M. D. McGehee, A. J. Heeger, "Semiconducting (conjugated) polymers as materials for solid‐state lasers, " Adv. Mater., 12, 1655-1668 (2000).
38 T. Kobayashi, W. J. Blau, H. Tillmann, H. H. Horhold, "Light amplification and lasing in a stilbenoid compound-doped glass-clad polymer optical fiber," IEEE J. Quantum Elect. 39, 664-672 (2003).
39 S. V. Frolov, M. Shkunov, Z. V. Vardeny, K. Yoshino, "Ring microlasers from conducting polymers," Phys. Rev. B 56, 4363-4366 (1997).
40 S. Krämmer, C. Vannahme, Cameron L. C. Smith, T. Grossmann, M. Jenne , S. Schierle, L. Jørgensen, I. S. Chronakis, A. Kristensen and Heinz Kalt, "Random Cavity Lasing from Electrospun Polymer Fiber Networks," Adv. Mater. 26, 8096-8100 (2014).